Quantum Theories and Geometry
- PDF / 12,735,969 Bytes
- 196 Pages / 439.37 x 666.142 pts Page_size
- 96 Downloads / 255 Views
		    MATHEMATICAL PHYSICS STUDIES A SUPPLEMENTARY SERIES TO LETTERS IN MATHEMATICAL PHYSICS
 
 Editors: M. FLATO, Universite de Dijon, France E. H. LIEB, Princeton University, U.SA. W. THIRRING, Institut fur Theoretische Physik der Universiliit Wien, Austria A. TRAUTMAN, Institute of Theoretical Physics, Warsaw, Poland
 
 Editorial Board: H. ARAKI, Kyoto University, Japan M. CAHEN, Universite Libre de Bruxelles, Belgium A. CONNES, /.lIES., France L. FADDEEV, Steklov Institute of Mathematics, Leningrad, U.S.s.R. B. NAGEL, K.T.ll., Stockholm, Sweden R. RACZKA,lnstitut Badan Jadrowych, Warsaw, Poland A. SALAM, International Centre for Theoretical Physics, Trieste, Italy W. SCHMID, Ilarvard University, U.s.A. J. SIMON, Universite de Dijon, France D. STERNHEIMER, College de France, France I. T.TODOROV, Institute of Nuclear Research, Sofia, Bulgaria J. WOLF, University of Cal ifomia, Berkeley, USA.
 
 VOLUME 10
 
 Quantum Theories and Geometry Edited by
 
 M. Cahen Department o/Malhematics. Free Unil'ersil.l' oj' Bru.Hels. Bl'/gium
 
 and
 
 M. Flato U/liI'enit.l' oj' Dijo/l. 1-i"1Incl'
 
 KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON
 
 library of
 
 Congres~
 
 Catalogin, in Publication Data
 
 Ou.ntu. th,grlU and g.o . . trV I ,little! by H. C,h,n ,nd H. Fino. p. c a . -- IHnh,lItlul phYSiCS stUd ies) BneO on lecturn glVln.1 . . . .,Ing held ,I thl FonOI1\on LIS Tr.llln, Harch 23-27, 1987 . Inc ludu Ind ... IS8N·13: 9r8-9-I-Ol0·7874-t1 1 . Qu.ntu . th ,ory--Congr""s. 2. Geo.et ry--Congrl$s,l . 11. Flalo, H. I HgShi l , 1937I. C.hen. H. IMlch e ll , 1935-
 
 HI. S,ron.
 
 OC173 . 96.0818 1966 53D . 1 '2--c1C 19
 
 68- 23251
 
 ISBN· U: 978-')4.(111)..7814-0 e-ISBN·\J: 97S.
 
 S being defined by
 
 the 2-form
 
 G 1n
 
 S(X-,Y-)
 
 < E;,[X,Y] >.
 
 I~
 
 In fact ife
 
 restrict ourselves to that case. Let us suppose now we have a covariant
 
 *
 
 product on
 
 W>
 
 that means that
 
 v X, Y € l.i We suppose finally that
 
 *
 
 u
 
 *u * vd~(E;)
 
 v
 
 fu
 
 v
 
 V u, v € A
 
 1S a scalar product on A
 
 Then, as In the first part :
 
 Definition 1.
 
 [X *
 
 G with
 
 If there exists an unitary representation of
 
 as infinitesimal generator, we shall say that representation is l.i
 
 generated by
 
 (=
 
 {X, X € l.i})
 
 and denote it by
 
 E(x), x € G, espe-
 
 cially :
 
 = Exp *
 
 E(exp tX)
 
 tx
 
 m.
 
 V x E Ii, t €
 
 Conditions for existence of such a representation was given by Nelson
 
 [17]
 
 and Flato, Simon, Snellman and Sternheimer [18].
 
 If
 
 G
 
 IS nilpotent and
 
 W a coadjoint orbit, by induction on
 
 dim l.i, we have
 
 Proposition 1. such that
 
 S =
 
 ~
 
 dp.
 
 J
 
 E; A
 
 There exists variables -+
 
 dq.) J
 
 (p.,q.) J
 
 J
 
 and:
 
 (p.,q.), j = 1, ... ,k J
 
 J
 
 is a global canonical chart
 
 (W
 
 Ri
 
 on
 
 m2k ,
 
 W
 
 38
 
 D.ARN,
 
 v
 
 k
 
 ~, x(~)
 
 X E
 
 a.(q)p. + a (q) J J 0
 
 ~
 
 j=1
 
 Hi th these very peculiar form, we push back the Moyal product from
 
 W, using this chart;
 
 to
 
 h = 1,
 
 we put
 
 *
 
 JR2
 
 is thus covariant.
 
 Moreover i f :
 
 J
 
 e
 
 -i ( ) u p,q
 
 dp I (2;r)k 2
 
 then
 
 k
 
 A(P,q)3 p .(fp u) +
 
 ~
 
 j=1
 
 x X
 
 k ~
 
 j=1
 
 A.d
 
 J Pj
 
 J
 
 k ~
 
 j=1
 
 B.(P,q)3 J
 
 qj
 
 (fpu)
 
 k
 
 +
 
 L B.d j=1 J qj
 
 is a complete vector fields on
 
 and		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	