Quantum Theories and Geometry

  • PDF / 12,735,969 Bytes
  • 196 Pages / 439.37 x 666.142 pts Page_size
  • 96 Downloads / 210 Views

DOWNLOAD

REPORT


MATHEMATICAL PHYSICS STUDIES A SUPPLEMENTARY SERIES TO LETTERS IN MATHEMATICAL PHYSICS

Editors: M. FLATO, Universite de Dijon, France E. H. LIEB, Princeton University, U.SA. W. THIRRING, Institut fur Theoretische Physik der Universiliit Wien, Austria A. TRAUTMAN, Institute of Theoretical Physics, Warsaw, Poland

Editorial Board: H. ARAKI, Kyoto University, Japan M. CAHEN, Universite Libre de Bruxelles, Belgium A. CONNES, /.lIES., France L. FADDEEV, Steklov Institute of Mathematics, Leningrad, U.S.s.R. B. NAGEL, K.T.ll., Stockholm, Sweden R. RACZKA,lnstitut Badan Jadrowych, Warsaw, Poland A. SALAM, International Centre for Theoretical Physics, Trieste, Italy W. SCHMID, Ilarvard University, U.s.A. J. SIMON, Universite de Dijon, France D. STERNHEIMER, College de France, France I. T.TODOROV, Institute of Nuclear Research, Sofia, Bulgaria J. WOLF, University of Cal ifomia, Berkeley, USA.

VOLUME 10

Quantum Theories and Geometry Edited by

M. Cahen Department o/Malhematics. Free Unil'ersil.l' oj' Bru.Hels. Bl'/gium

and

M. Flato U/liI'enit.l' oj' Dijo/l. 1-i"1Incl'

KLUWER ACADEMIC PUBLISHERS DORDRECHT / BOSTON / LONDON

library of

Congres~

Catalogin, in Publication Data

Ou.ntu. th,grlU and g.o . . trV I ,little! by H. C,h,n ,nd H. Fino. p. c a . -- IHnh,lItlul phYSiCS stUd ies) BneO on lecturn glVln.1 . . . .,Ing held ,I thl FonOI1\on LIS Tr.llln, Harch 23-27, 1987 . Inc ludu Ind ... IS8N·13: 9r8-9-I-Ol0·7874-t1 1 . Qu.ntu . th ,ory--Congr""s. 2. Geo.et ry--Congrl$s,l . 11. Flalo, H. I HgShi l , 1937I. C.hen. H. IMlch e ll , 1935-

HI. S,ron.

OC173 . 96.0818 1966 53D . 1 '2--c1C 19

68- 23251

ISBN· U: 978-')4.(111)..7814-0 e-ISBN·\J: 97S.

S being defined by

the 2-form

G 1n

S(X-,Y-)

< E;,[X,Y] >.

I~

In fact ife

restrict ourselves to that case. Let us suppose now we have a covariant

*

product on

W>

that means that

v X, Y € l.i We suppose finally that

*

u

*u * vd~(E;)

v

fu

v

V u, v € A

1S a scalar product on A

Then, as In the first part :

Definition 1.

[X *

G with

If there exists an unitary representation of

as infinitesimal generator, we shall say that representation is l.i

generated by

(=

{X, X € l.i})

and denote it by

E(x), x € G, espe-

cially :

= Exp *

E(exp tX)

tx

m.

V x E Ii, t €

Conditions for existence of such a representation was given by Nelson

[17]

and Flato, Simon, Snellman and Sternheimer [18].

If

G

IS nilpotent and

W a coadjoint orbit, by induction on

dim l.i, we have

Proposition 1. such that

S =

~

dp.

J

E; A

There exists variables -+

dq.) J

(p.,q.) J

J

and:

(p.,q.), j = 1, ... ,k J

J

is a global canonical chart

(W

Ri

on

m2k ,

W

38

D.ARN,

v

k

~, x(~)

X E

a.(q)p. + a (q) J J 0

~

j=1

Hi th these very peculiar form, we push back the Moyal product from

W, using this chart;

to

h = 1,

we put

*

JR2

is thus covariant.

Moreover i f :

J

e

-i ( ) u p,q

dp I (2;r)k 2

then

k

A(P,q)3 p .(fp u) +

~

j=1

x X

k ~

j=1

A.d

J Pj

J

k ~

j=1

B.(P,q)3 J

qj

(fpu)

k

+

L B.d j=1 J qj

is a complete vector fields on

and