Rational Representations of Algebraic Groups Tensor Products and Fil
- PDF / 14,199,665 Bytes
- 261 Pages / 468 x 684 pts Page_size
- 7 Downloads / 470 Views
		    1140 Stephen Donkin
 
 Rational Representations of Algebraic Groups: Tensor Products and Filtrations
 
 Springer-Verlag Berlin Heidelberg New York Tokyo
 
 Author
 
 Stephen Donkin School of Mathematical Sciences, Queen Mary College Mile End Road London E1 4NS, England
 
 Mathematics Subject Classification (1980): 20G ISBN 3-540-15668-2 Springer-Verlag Berlin Heidelberg New York Tokyo ISBN 0-387-15668-2 Springer-Verlag New York Heidelberg Berlin Tokyo This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translating, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
 
 © by Springer-Verlag Berlin Heidelberg 1985 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210
 
 Ta My Mathe-ft.
 
 Table of Contents
 
 Introduction
 
 1
 
 Homological algebra
 
 7
 
 1.1
 
 Induction
 
 7
 
 Chapter 1.
 
 1.2
 
 Injective modules for soluble groups
 
 12
 
 1.3
 
 Reductive groups
 
 14
 
 1.4
 
 B cohomology
 
 15
 
 1.5
 
 Induced modules
 
 16
 
 1.6
 
 Kempf's Vanishing Theorem
 
 18
 
 1.7
 
 Parabolic subgroups
 
 18
 
 More homological algebra
 
 21
 
 Chapter 2. 2.1
 
 Applications of the Vanishing Theorem
 
 21
 
 2.2
 
 Euler characteristics
 
 22
 
 2.3
 
 Some useful results
 
 26
 
 Reductions
 
 31
 
 Good filtrations
 
 31
 
 Chapter 3. 3.1 3.2
 
 Good filtrations for reductive groups
 
 35
 
 3.3
 
 Canonical filtration
 
 38
 
 3.4
 
 Good filtrations for semisimple groups
 
 40
 
 3.5
 
 Good filtrations for sernisimple, simply connected groups
 
 46
 
 3.6
 
 The canonical filtration revisited
 
 49
 
 3.7
 
 A useful lemma
 
 50
 
 The classical groups
 
 52
 
 Exterior powers
 
 52
 
 Chapter 4. 4.1 4.2
 
 Miniscule weights
 
 53
 
 4.3
 
 Exceptional weights
 
 53
 
 4.4
 
 The first fundamental dominant weight
 
 54
 
 VI
 
 4.5
 
 Some module homomorphisms
 
 56
 
 4.6
 
 Character formulas
 
 57
 
 4.7
 
 The canonical filtration again
 
 59
 
 4.8
 
 The restriction of Y(A to P Q r) The restriction of Y(A ) to the maximal parabolic subgroups r
 
 60
 
 Homological algebra revisited
 
 76
 
 4.9
 
 Chapter 5.
 
 70
 
 Chapter 6.
 
 86
 
 Chapter 7.
 
 89
 
 Introduction
 
 89
 
 7.2
 
 Y (AI)
 
 89
 
 7.3
 
 Y (A
 
 7.4
 
 Odd characteristic
 
 7.5
 
 Exact sequences
 
 7.6 7.7
 
 The restriction of Y(A ) to P Q 2 M, N/E and Y /S
 
 7.8
 
 l:
 
 ,',\ {a 3}
 
 110
 
 7.9
 
 l:
 
 ,',\{a }
 
 112
 
 7.10
 
 l:
 
 117
 
 7.11
 
 ,',\{a } l
 
 l: arbitrary
 
 124
 
 7.12
 
 Y(A
 
 124
 
 7.1
 
 92
 
 4)
 
 98
 
 99
 
 2
 
 7.13
 
 Y(A
 
 2)
 
 and
 
 2)
 
 109
 
 128
 
 are true
 
 Chapter 8.
 
 Chapter 9.
 
 101
 
 133
 
 E
 
 140
 
 7
 
 9.1
 
 Y (AI)
 
 140
 
 9.2
 
 Y (A
 
 142
 
 9.3
 
 6) p '" 2 or 7
 
 9.4
 
 The restriction of Y(A
 
 9.5 9.6 9.7 9.8
 
 .
 
 P"
 
 143
 
 7)
 
 to P
 
 n
 
 147
 
 (D)
 
 155
 
 Character formulas
 
 157
 
 L.
 
 .
 
 P" t..
 
 Y (A
 
 7
 
 )
 
 (E)
 
 160 168
 
 VII
 
 Chapter 10. 10.1
 
 E
 
 169
 
 8
 
 169
 
 Y (AI)
 
 10.2
 
 p
 
 10.3
 
 The restriction of Y (1.. ) to P 7 n · PL (D)
 
 178
 
 Orbits and characters · PL (E)
 
 187
 
 10.4 10.5 10.6 10.7
 
 ;		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	