Rebuilding a resilient future for Puerto Rico after Hurricane Maria

  • PDF / 10,161,526 Bytes
  • 3 Pages / 585 x 783 pts Page_size
  • 47 Downloads / 223 Views

DOWNLOAD

REPORT


Rebuilding a resilient future for Puerto Rico after Hurricane Maria By Sarah Vorpahl

T

he year 2017 produced 17 named hurricanes, six of which were classified as a Category 3 or higher, according to the US National Oceanic and Atmospheric Administration (NOAA).1 One of these, Hurricane Maria, brought unprecedented devastation to Puerto Rico on September 20, 2017, with winds over 150 mph and nearly 25 inches of rain. Thousands of Americans died as a result of these storms, and the islands are still trying to recover. One of the biggest impacts came with the destruction of the electric grid, which suffered a complete power outage and took nearly a year to restore. The failure of the electrical system had far-ranging effects on health, education, jobs, agriculture, and safety. Even before the storm, Puerto Rico was paying some of the highest energy rates in the United States, with most of the electricity on the island coming from expensive imported fossil fuels, such as diesel and coal. Despite abundant solar resources on the island, the renewable energy penetration was less than 2%, falling short of the Renewable Portfolio Standard goal of 12% by 2015.

As is evident from the degree of power outages (and ongoing issues), a centralized electrical grid that has existed in Puerto Rico is vulnerable to hurricanes, which are predicted to increase in severity in the future because of climate change. Despite the fact that many are pushing for a return to a fossil fuel infrastructure, local community efforts across Puerto Rico have begun to create their own renewable energy sources. For example, Casa Pueblo, a self-reliant communitybased organization located in Adjuntas, has continued to install solar systems after its own operations remained intact, and provided support for the local community after the storm. Scientists have also been stepping in to bring solar to the island. Lilo Pozzo, a professor of chemical engineering at the University of Washington, brought a team of graduate students from the Clean Energy Institute to a remote mountain community called Jayuya to install 21 solar plus storage nanogrid systems.2 This type of microgrid technology could lead to sustainable, clean energy infrastructures that can back up public health

infrastructures and other needs when the lights go out. (See the article “Rebuilding better electrical grids in disaster zones,” by Scott Litzelman in the November 2018 issue of MRS Bulletin.) Immediately following the storm, a US working group, which included several national laboratories, power authorities, the State of New York, and others, developed a roadmap3 for the resilient rebuilding of Puerto Rico’s grid. This document collected and analyzed Puerto Rico’s power system information, both before and after the storm, and made recommendations that included making smart grid investments to bring more distributed resources online, rebuilding with renewable energy, and automating control systems. The US Department of Energy (DOE) also compiled a plan4 for a roadmap for grid modernization