Redundancy in Nonlinear Programs
- PDF / 6,199,190 Bytes
- 65 Pages / 594 x 828 pts Page_size
- 92 Downloads / 188 Views
-oq uoa!$ s! poqaom aqa 'opoaopnosd u I "punoj s! :~q:~ ~uiod ~soq oq:~jo ~Ia~a~ ~u!doo~ t otiq~ 'S uoi~oa olqisvoJ oqa u! s:~uiod maoj!un poanqIa:~sIp £ilUaia -nap! pu~ :~uopuodopu! jo oauonbos ~ ~ui~aouo~ jo sas~.suoa poqaom s~.qm .([~] pu~ [at1) (SHd) V'~va~ ~aopuv,, a,,nd s! uoI:~zItuI:ldo I~qoI ~ aoj poq~om a!~s~qaoas :~soldtuIs oq& "~/a.,vas' u, opuv~ (aand) •uo!~,vz!mI:~do I~qoI$ soj sulqaiso~iv ivai~a~ad (~ui. -aaoddns Lii~aiaoaooqa :to) Suiaidsu! a q iv!auoaod u~oqs oavq .~oqa 'aoaoosoIAI "JIOS:~!u! ~uIasoso~u! oar spoq~otu osoq:~ aol pouIv:~qo oq u~a ~q~ s~Insoa Ira! -aoaooqa oqa 'aoao~o H "spoqaotu osoqa jo uoiavauotu -oldm ! auo!a~o uv asixo aou soap oaoqa :~uiod siqa :lv ~q:~ osuos oq~ u! 'oan~u i~n~doauoa v j o oa~ oaaq passnasip spoq:~otu oq& "spoq:loIAI I e n a d o a u o D
•ozdI~UV oa (oiq!ssodm ! uoao ao 'oIqvaisopun :to) aina~ip s! oanaanaas IVaI:~vuIoqavm osoqa~ SmOlqoad alpuv q o~ X:~!iiqv sa! aoj asoaoau! ~u! -svoaau! po.~o.t'uo 'opvaop asv I oqa ~u!anp 'oavq spa -q~om osoq~ 'oao.toaoq~L "stuolqoad jo ss~Ia opia~ LaoA 'soj ooau~s~n~ oauv.tusoI.I.tsod ai:~oadtuXsv u~ Xo.t'uo puv 'oa olqvaIIddv os~ spoqaom osaq& "suo!anq!sa -s!p ffaiiiq~qoad jo oauonbos :to 'uoianqIsasip ffa!iiq~ -qosd pot.3iaodsosd amos oa ~u!psoaav 'molqosd oqa jo uo!$oa olqt.s~oJ oqa u! sauIod jo oauonbos ~ jo Suiidmvs mopuva oq~ no dlOlOS .qoa avqa spoqaom aI:~s~qaoas osoq~ oa~ ~povTatu yaava~ mopuv H
i~qolS aoj spoqaom ai:~s~qao~s jo aidoa oqa uo s.~oh -an S "ouo X~iiiq~qoad q~ia~ punoj oq Ii!~ ~S so ,~H ~o :~uomolO u~ 'd~iu!3u ! o:~ sos~oaau! ~aoj3o oq~ s~ '~q:~ o~osd o~ oiq!ssod XIi~nsn s! :~! 'p~o~su I "paat...3!aa~s s! ssoaans jo ooau~avn~ oanlosq~ uv .to d:~IIIqIssod oq:l 'oaojoaoq& "ssoaoad a!~,svqao~g v j o uo!~,vziivoa oq oa poaopIsuoa s! .tlOS~! uoIaaunj oAi:~ao.t'qo oqa ao 'oIqvIa~A mopuva v s! poqaom oqa jo otuoa~no oq:~ aoq~!o ~q~ su~otu siq& "s~uomolO aI~S~qaoas amos ui~auoa a~qa spoqaom os~ spoqaom a!~s~qaoas "([ZI]) 0 < '
amos ao~
(,_ ,r ~ (~)/ s ~ x} = 's ~os IOAOIoq~ u! ao
{ , s ~ ,x amos ao~ ~ ~ II,
,H
u! puno 3 s! ~u!od j! poAIOS poaopIsuoa Xiivnsn s! moiqoad uoiavz!m -!ado IvqoI ~ oqa 'oaotoaoq& "sdo:~s jo aoqtunu o:l!utj u$ olqValosun ~i:~uoaoqu! s! tuolqoad sIqa 'suoIa -dmnssv IVUO!a!ppv anoqa!~ 'a~qa ua~omt-IIOa~ s! aI SSx •( ~ ) / x ~
-
,I
oaoqa~ {,:- (x)/s
~ x} - ,s
~os oq~ u! ~u!od ~ pug o~ s! i~o~ aq:~ pu~ 'Xpoq ~a~dmoa ~ s! pl:I D S pu~ 'S uo uoi~aun 3 snonui~uo3 ~ s!/" oaoqa~ 'S ~ x
"~'s /
S(IOH&aIAI H D H V a S M O ( I N V } t
puv '[OI] '[~g] '[6g] u! punoj oq uva uoIa~z!miado
tuaol oq:~ jo moIqoad ~ s! uzalqoad uoz.Tvzz.tuz.Tdo lvqol5 I~aOuo~ V
tee]
11
Random search methods point in S~ is reached within the first N iterations is equal to
1 - (1 - ~(Se)) N ,
where ~ denotes the uniform distribution on S. In other words, this method offers a probabilistic asymptotic guarantee. PROCEDURE pure random search() InputInstance(); Set y = -oo; DO Generate a point x from the uniform distribution over S; Set y = max(y, f(x)); OD; RETURN(y); END pure random search; A pseudocode for PRS.
Data Loading...