Regularity and Approximability of Electronic Wave Functions
The electronic Schrödinger equation describes the motion of N-electrons under Coulomb interaction forces in a field of clamped nuclei. The solutions of this equation, the electronic wave functions, depend on 3N variables, with three spatial dimensions for
- PDF / 2,340,730 Bytes
- 194 Pages / 439.37 x 666.142 pts Page_size
- 45 Downloads / 193 Views
2000
Harry Yserentant
Regularity and Approximability of Electronic Wave Functions
ABC
Harry Yserentant Technische Universität Berlin Institut für Mathematik Straße des 17. Juni 136 10623 Berlin Germany [email protected]
ISBN: 978-3-642-12247-7 e-ISBN: 978-3-642-12248-4 DOI: 10.1007/978-3-642-12248-4 Springer Heidelberg Dordrecht London New York Lecture Notes in Mathematics ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 Library of Congress Control Number: 2010927755 Mathematics Subject Classification (2000): 35J10, 35B65, 41A25, 41A63, 68Q17 c Springer-Verlag Berlin Heidelberg 2010 ° This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Cover design: SPi Publisher Services Printed on acid-free paper springer.com
Preface
The electronic Schr¨odinger equation describes the motion of N electrons under Coulomb interaction forces in a field of clamped nuclei. Solutions of this equation depend on 3N variables, three spatial dimensions for each electron. Approximating the solutions is thus inordinately challenging, and it is conventionally believed that a reduction to simplified models, such as those of the Hartree-Fock method or density functional theory, is the only tenable approach. This book seeks to convince the reader that this conventional wisdom need not be ironclad: the regularity of the solutions, which increases with the number of electrons, the decay behavior of their mixed derivatives, and the antisymmetry enforced by the Pauli principle contribute properties that allow these functions to be approximated with an order of complexity which comes arbitrarily close to that for a system of one or two electrons. The present notes arose from lectures that I gave in Berlin during the academic year 2008/09 to introduce beginning graduate students of mathematics into this subject. They are kept on an intermediate level that should be accessible to an audience of this kind as well as to physicists and theoretical chemists with a corresponding mathematical training. The text requires a good knowledge of analysis to the extent taught at German universities in the first two years of study, including Lebesgue integration and some basic facts on Banach and Hilbert spaces (completion, orthogonality, project
Data Loading...