Relaxation Methods and Applications

The key idea of relaxation methods is to reduce, using some iterative process, the solution of some problems posed in a product space V = Π i = 1 N V i (minimization of functionals, solution of systems of equations and/or inequalities, etc.) to the soluti

  • PDF / 33,420,701 Bytes
  • 506 Pages / 440.823 x 666.744 pts Page_size
  • 56 Downloads / 319 Views

DOWNLOAD

REPORT


Editors

H. Cabannes M. Holt H. B. Keller J. Killeen S. A. Orszag

Springer Series in Computational Physics Editors: H. Cabannes, M. Hoit, H. B. Keller, J. Killeen, S. A. Orszag F. Bauer/ O. BetancourV P. Garabedian: A Computational Method in Plasma Physics 1978. vi, 144 pages. 22 figures. ISBN 08833-4 D. Book (ed.): Finite-Difference Techniques for Vectorized Fluid Dynamics Calculations 1981. viii, 240 pages. 60 figures. ISBN 10482-8 C.A.J. F1etcher: Computational Galerkin Methods 1984 xi, 309 pages. 107 figures. ISBN 12633-3 R. Glowinski: Numerica! Methods for Nonlinear Variational Problems 1984. xv, 493 pages. 80 figures. ISBN 12434-9 M. Hoit: Numerica! Methods in Fluid Dynamics, 2nd ed. 1984. xi, 273 pages. 114 figures. ISBN 12799-2 Kubicek/ Marek: Computational Methods in Bifurcation Theory and Dissipative Structures 1983. xi, 243 pages. 91 figures. ISBN 12070-X Peyret/Taylor: Computational Methods for Fluid Flow 1982. x, 358 pages. 129 figures. ISBN 11147-6 O. Pironneau: Optimal Shape Design for Elliptic Systems 1983. xiii, 192 pages. 57 figures. ISBN 12069-6 Yu. 1. Shokin: The Method of Differential Approximation 1983. xiii, 296 pages. ISBN 12225-7 D. Telionis: Unsteady Viscous Flows 1981. xxiii, 406 pages. 127 figures. ISBN 10481-8 F. Thomasset: Implementation of Finite Element Methods for Navier-Stokes Equations 1981. xii, 161 pages. 86 figures. ISBN 10771-1

Roland Glowinski

Numerica! Methods for Nonlinear Variational Problems With 82 Illustrations

1

Springer-Verlag Berlin Heidelberg GmbH

Roland Glowinski Institut de Recherche d'Informatique et d'Automatique (IRIA) Domaine de Voluceau, Rocquencourt, B.P. 105 F-78150 Le Chesnay, France Editors

Henri Cabannes

M. Hoit

Mecanique Theorique Universite Pierre et Marie Curie Tour 66. 4, Place Jussieu F-75005 Paris France

Department of Mechanical Engineering College of Engineering University of California Berkeley, CA 94720 U.S.A.

H. B. Keller

John Killeen

Applied Mathematics 101-50 Firestone Laboratory California Institute of Technology Pasadena, CA 91125 U.S.A.

Lawrence Livermore Laboratory P.O. Box 808 Livermore, CA 94551 U.S.A.

Stephen A. Orszag Department of Mathematics Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A Library of Congress Cataloging in Publication Data Glowinski, R. Numerica! methods for nonlinear variationa1 prob1ems. (Springer series in computationa1 physics) Bibliography: p. Includes indexes. 1. Variational inequalities (Mathematics) 2. Numerica! analysis. I. Title. Il. Series. 83-6732 515'.26 QA316.G56 1983 A preliminary version of this book was originally published as part of a set of monographs on numerica! analysis in the series Lectures on Mathematics and Physics, by the Tata Institute of Fundamental Research.

© 1984 by Springer-Verlag Berlin Heidelberg Originally published by Springer-Verlag Berlin Heidelberg New York Tokyo in 1984 Softcover reprint of the hardcover 1st edition 1984 Ali rights reserved. No part of this book may be translated or reproduced in any form without written permission from Spri