Renewal Processes
This is the first chapter in the book to deal with random processes in continuous time, namely, with the so-called renewal processes. Section 10.1 establishes the basic terminology and proves the integral renewal theorem in the case of non-identically dis
- PDF / 6,160,836 Bytes
- 742 Pages / 441 x 666 pts Page_size
- 23 Downloads / 247 Views
Alexandr A. Borovkov
Probability Theory
Universitext
Universitext Series Editors: Sheldon Axler San Francisco State University, San Francisco, CA, USA Vincenzo Capasso Università degli Studi di Milano, Milan, Italy Carles Casacuberta Universitat de Barcelona, Barcelona, Spain Angus MacIntyre Queen Mary, University of London, London, UK Kenneth Ribet University of California, Berkeley, Berkeley, CA, USA Claude Sabbah CNRS, École Polytechnique, Palaiseau, France Endre Süli University of Oxford, Oxford, UK Wojbor A. Woyczynski Case Western Reserve University, Cleveland, OH, USA
Universitext is a series of textbooks that presents material from a wide variety of mathematical disciplines at master’s level and beyond. The books, often well class-tested by their author, may have an informal, personal, even experimental approach to their subject matter. Some of the most successful and established books in the series have evolved through several editions, always following the evolution of teaching curricula, into very polished texts. Thus as research topics trickle down into graduate-level teaching, first textbooks written for new, cutting-edge courses may make their way into Universitext.
For further volumes: www.springer.com/series/223
Alexandr A. Borovkov
Probability Theory Edited by K.A. Borovkov Translated by O.B. Borovkova and P.S. Ruzankin
Alexandr A. Borovkov Sobolev Institute of Mathematics and Novosibirsk State University Novosibirsk, Russia
Translation from the 5th edn. of the Russian language edition: ‘Teoriya Veroyatnostei’ by Alexandr A. Borovkov © Knizhnyi dom Librokom 2009 All Rights Reserved. 1st and 2nd edn. © Nauka 1976 and 1986 3rd edn. © Editorial URSS and Sobolev Institute of Mathematics 1999 4th edn. © Editorial URSS 2003
ISSN 0172-5939 ISSN 2191-6675 (electronic) Universitext ISBN 978-1-4471-5200-2 ISBN 978-1-4471-5201-9 (eBook) DOI 10.1007/978-1-4471-5201-9 Springer London Heidelberg New York Dordrecht Library of Congress Control Number: 2013941877 Mathematics Subject Classification: 60-XX, 60-01 © Springer-Verlag London 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer. Permissions for use may be obtained t
Data Loading...