Representation of Native Americans in US science and engineering faculty

  • PDF / 3,080,229 Bytes
  • 5 Pages / 585 x 783 pts Page_size
  • 49 Downloads / 176 Views

DOWNLOAD

REPORT


I

mpending global crises and US demographic changes require the United States to develop its intellectual capital fully, especially in science and engineering, in order to maintain its global leadership and economic strength. As US population demographic changes continue and make their way through our educational system, they will directly affect thinking and practices regarding science and engineering education in the United States, the future of science and engineering professions, and the need for diversity in the science and engineering workforce. It is essential to measure and understand the demographics of science and engineering students who will be available to the workforce in the near future, and their same-gender and samerace role models and mentors. Of five traditional race categories in the United States (Caucasian, Black, Hispanic, Asian, and Native American), Native Americans are lowest in population. Native Americans are the indigenous people of the United States, with pure-blood Native Americans being about 1.2% of the total population in the 2012 US Census. Although they are usually the most underrepresented race, their representation is rarely determined or reported by surveys collecting data samples by race/ethnicity due to their small numbers. These numbers also do not survive the statistical treatment (i.e., error analysis), which must be applied to data from samples. This means that the degree of underrepresentation of Native Americans is largely unknown. For this reason, we focus on Native Americans in this article. Data used herein on Native Americans are from the Nelson Diversity Surveys (NDSs),1–6 which quantify the representation of women and minorities among tenured and tenure-track faculty in 15 STEM disciplines at research universities. The NDSs consist of four data sets compiled during fiscal years (FYs) 2002, 2005, 2007, and 2012. Many of the disciplines surveyed are closely related to materials science and engineering (MS&E): chemistry,

mathematics, computer science, astronomy, physics, chemical engineering, civil engineering, electrical engineering, mechanical engineering, economics, sociology, political science, biological sciences, psychology, and earth sciences. However, comparing how chemistry and engineering disciplines are faring versus other disciplines, such as social sciences and life sciences, also provides an approximation to how MS&E is faring, compared to those disciplines. The data pertain to whole populations that do not require statistics to be applied for analysis, such as data that result from collecting samples. NDS data are disaggregated by race, rank, and gender, making them powerful and accurate for even the smallest underrepresented groups.

Methodology

In order to investigate the race/ethnicity, rank, and gender of faculty, we surveyed the top research departments of 15 science and engineering disciplines. Our data were gathered by surveying the top 100 departments in each of the disciplines, as ranked by the National Science Foundation (NSF) according t