Representation Theory of Algebraic Groups and Quantum Groups

This volume contains invited articles by top-notch experts who focus on such topics as: modular representations of algebraic groups, representations of quantum groups and crystal bases, representations of affine Lie algebras, representations of affine Hec

  • PDF / 3,379,889 Bytes
  • 356 Pages / 467.552 x 683.224 pts Page_size
  • 10 Downloads / 210 Views

DOWNLOAD

REPORT


Akihiko Gyoja Hiraku Nakajima Ken-ichi Shinoda Toshiaki Shoji Toshiyuki Tanisaki Editors

Representation Theory of Algebraic Groups and Quantum Groups

Progress in Mathematics Volume 284

Series Editors Hyman Bass Joseph Oesterl´e Alan Weinstein

Akihiko Gyoja Hiraku Nakajima Ken-ichi Shinoda Toshiaki Shoji Toshiyuki Tanisaki Editors

Representation Theory of Algebraic Groups and Quantum Groups

Editors Akihiko Gyoja Nagoya University Graduate School of Mathematics Chikusa-ku Nagoya, 464-8602 Japan [email protected]

Toshiaki Shoji Nagoya University Graduate School of Mathematics Chikusa-ku Nagoya, 464-8602 Japan [email protected]

Hiraku Nakajima Kyoto University Research Institute for Mathematical Sciences Kyoto, 606-8502 Japan [email protected]

Toshiyuki Tanisaki Osaka City University Graduate School of Science Sumiyoshi-ku Osaka, 558-8585 Japan [email protected]

Ken-ichi Shinoda Sophia University Faculty of Science and Technology Department of Information and Communication Sciences Chiyoda-ku Tokyo, 102-8554 Japan [email protected]

ISBN 978-0-8176-4696-7 e-ISBN 978-0-8176-4697-4 DOI 10.1007/978-0-8176-4697-4 Springer New York Dordrecht Heidelberg London Mathematics Subject Classification (2010): 17B37, 16Gxx, 17B67, 20C08, 17B20, 17B35, 20G15, 22E65, 14M15, 14L30 c Springer Science+Business Media, LLC 2010  All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer ScienceCBusiness Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper www.birkhauser-science.com

Contents

Preface .. . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . ix Program .. . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . xi Quotient Categories of Modular Representations .. . . . . . . . . . . .. . . . . . . . . . . . . . . . . Henning Haahr Andersen

1

Dipper–James–Murphy’s Conjecture for Hecke Algebras of Type Bn . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . 17 Susumu Ariki and Nicolas Jacon On Domino Insertion and Kazhdan–Lusztig Cells in Type Bn . . . . . . . . . . . . . . . 33 C´edric Bonnaf´e, Meinolf Geck, Lacrimioara Iancu, and Thomas Lam Runner Removal Morita Equivale