Research Progress in the Resistance Switching of Transition Metal Oxides for RRAM Application: Switching Mechanism and P
- PDF / 627,634 Bytes
- 11 Pages / 612 x 792 pts (letter) Page_size
- 62 Downloads / 212 Views
1160-H10-01
Research Progress in the Resistance Switching of Transition Metal Oxides for RRAM Application: Switching Mechanism and Properties Optimization Qun Wang, Xiaomin Li, Lidong Chen, Xun Cao, Rui Yang, and Weidong Yu State Key Laboratory of High Performance Ceramics & Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding Xi Road, Shanghai 200050, People’s Republic of China
ABSTRACT Electric-induced resistance switching (EIRS) effect based on transition metal (TM) oxides, such as perovskite manganites (Pr1-xCaxMnO3, La1-xCaxMnO3) and binary oxides (NiO, TiO2 and CoO) etc, has attracted great interest for potential applications in next generation nonvolatile memory known as resistance random access memory (RRAM). Compared with other nonvolatile memories, RRAM has several advantages, such as fast erasing times, high storage densities, and low operating consumption. Up to date, the switching mechanism, property improvement and new materials exploitation are still the hotspots in RRAM research. In this report, the main results of resistance switching of two kinds of TM oxides including La0.7Ca0.3MnO3 and TiO2 were presented. Based on the I-V characteristics, the field-direction dependence of resistance switching (RS) behavior, and the conduction process analysis, the EIRS mechanisms were studied in detail. For the La0.7Ca0.3MnO3 film, the EIRS mechanism was related to the carrier injected space charge limited current (SCLC) conduction controlled by the traps existing at the interface between top electrode and La0.7Ca0.3MnO3 film. The RS behavior is produced by the trapping/detrapping process of carriers under different voltages. For the TiO2 film, both unipolar and bipolar RS behavior can be obtained in our experiments. The interface controlled filamentary mechanism was proposed to explain the unipolar EIRS in nanocrystalline TiO2 thin films, while the bipolar RS behavior may be related to the charge trapping or detrapping effect. In addition, it was confirmed that the I-V sweeps in vacuum environment, the applying of asymmetry pulse pairs and the oxygen annealing of films can improve the endurance of the EIRS devices.
INTRODUCTION Electric-induced resistance switching (EIRS) based on transition metal (TM) oxides has recently attracted considerable research interest due to their potential application for resistance random access memory (RRAM), which is considered as the promising next-generation nonvolatile memory with some advantages of drastically reduced power consumption, fast switching speed and nondestructive readout [1-3]. Many models were proposed such as the modification of the Schottky barrier height by trapped charge carriers [4], pulse-generated crystalline defects [5], interface metal- insulator transition [6-7], trap-controlled space-chargelimited current (TC-SCLC) [8-10], the formation of a conductive filamentary path [11,12], the electrical field-induced migration of oxygen vacancies [13-15], and the polaron localization at
the metal-oxide interfacial
Data Loading...