Responses of intra-annual runoff to forest recovery patterns in subtropical China
- PDF / 1,260,866 Bytes
- 10 Pages / 595.276 x 790.866 pts Page_size
- 78 Downloads / 156 Views
ORIGINAL PAPER
Responses of intra‑annual runoff to forest recovery patterns in subtropical China Zhipeng Xu1 · Wenfei Liu1 · Qiang Li2 · Jianping Wu3 · Honglang Duan1 · Guomin Huang1 · Yizao Ge1
Received: 29 March 2020 / Accepted: 3 July 2020 © Northeast Forestry University 2020
Abstract Forest recovery plays a critical role in regulating eco-hydrological processes in forested watersheds. However, characteristics of the intra-annual runoff variation associated with different forest recovery patterns remain poorly understood. In this study, three forest change periods were identified, the baseline period (1961–1985), reforestation period (1986 − 2000) and fruit tree planting period (2001–2016). We selected the magnitude of seasonal runoff (wet and dry seasons) and distribution characteristics, i.e., non-uniformity coefficient (Cv), complete accommodation coefficient (Cr), concentration ratio (Cn), concentration period (Cd), absolute variation ratio (ΔR) and relative variation ratio (Cmax). The pair-wise approach evaluated the intra-annual runoff variation characteristics between forest change periods. Results indicate that reforestation decreased wet season runoff and Project funding: This work was supported financially by the Education Department of Jiangxi Provincial (GJJ151141), National Natural Science Foundation of China (31660234), Jiangxi Province Department of Science and Technology (20161BBH80049) and the Outstanding Young Scholar of Jiangxi Science and Technology Innovation (20192BCBL23016).
increased dry season runoff. In contrast, fruit tree planting increased wet season runoff and had no significant effect on dry season runoff. For intra-annual runoff distribution characteristics, reforestation significantly reduced the Cv, Cr, Cn and Cmax. Distribution of the intra-annual runoff in the fruit tree planting period was not significantly different from the baseline. We concluded that reforestation reduced the occurance of extreme water conditions in wet and dry seasons and effectively increased the stability of the intra-annual runoff. In contrast, fruit tree planting increased instability and fluctuation of the intra-annual runoff after reforestation. The characteristics of the intra-annual runoff to fruit tree planting was similar to those of the baseline. Therefore, adopting fruit tree planting practices to regulate intra-annual runoff characteristics may not be a practical approach, and impacts of different reforestation practices should be ascertained in our study region. The implications of this study should guide regional land–water management, and this study adds to the understanding of the impacts gained in forest cover on hydrology. Keywords Intra-annual runoff variation · Seasonal runoff · Forest recovery · Reforestation · Fruit tree planting
The online version is available at https://www.springerlink.com. Corresponding editor: Zhu Hong. Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11676-020-01219-2) contains supplementary materia
Data Loading...