Schwarz-Pick Type Inequalities
This book discusses in detail the extension of the Schwarz-Pick inequality to higher order derivatives of analytic functions with given images. It is the first systematic account of the main results in this area. Recent results in geometric func
- PDF / 98,575 Bytes
- 7 Pages / 481.872 x 680.297 pts Page_size
- 59 Downloads / 218 Views
		    Advisory Editorial Board Leonid Bunimovich (Georgia Institute of Technology, Atlanta) Benoît Perthame (Université Pierre et Marie Curie, Paris) Laurent Saloff-Coste (Cornell University, Ithaca) Igor Shparlinski (Macquarie University, New South Wales) Wolfgang Sprössig (TU Bergakademie Freiberg) Cédric Vilani (Ecole Normale Supérieure, Lyon)
 
 Farit G. Avkhadiev Karl-Joachim Wirths
 
 Schwarz-Pick Type
 
 Inequalities
 
 Birkhäuser Verlag Basel . Boston . Berlin
 
 $XWKRUV )DULW*$YNKDGLHY Chebotarev Research Institute .D]DQ6WDWH8QLYHUVLW\ .D]DQ Russia HPDLO)DULW$YNKDGLHY#NVXUX
 
 .DUO-RDFKLP:LUWKV ,QVWLWXWIU$QDO\VLVXQG$OJHEUD 78%UDXQVFKZHLJ %UDXQVFKZHLJ *HUPDQ\ HPDLONMZLUWKV#WXEVGH
 
 0DWKHPDWLFDO6XEMHFW&ODVVL½FDWLRQ$&&&' )0
 
 /LEUDU\RI&RQJUHVV&RQWURO1XPEHU
 
 %LEOLRJUDSKLFLQIRUPDWLRQSXEOLVKHGE\'LH'HXWVFKH%LEOLRWKHN 'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUD½H GHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQWKH,QWHUQHWDWKWWSGQEGGEGH!
 
 ,6%1%LUNKlXVHU9HUODJ$*%DVHOÀ%RVWRQÀ%HUOLQ 7KLVZRUNLVVXEMHFWWRFRS\ULJKW$OOULJKWVDUHUHVHUYHGZKHWKHUWKHZKROHRUSDUWRIWKH PDWHULDOLVFRQFHUQHGVSHFL½FDOO\WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRILOOXVWUD WLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFUR½OPVRULQRWKHUZD\VDQGVWRUDJHLQ GDWDEDQNV)RUDQ\NLQGRIXVHSHUPLVVLRQRIWKHFRS\ULJKWRZQHUPXVWEHREWDLQHG %LUNKlXVHU9HUODJ$* %DVHOÀ%RVWRQÀ%HUOLQ 32%R[&+%DVHO6ZLW]HUODQG Part of Springer Science+Business Media &RYHUGHVLJQ%LUJLW%ORKPDQQ=ULFK6ZLW]HUODQG 3ULQWHGRQDFLGIUHHSDSHUSURGXFHGIURPFKORULQHIUHHSXOS7&) 3ULQWHGLQ*HUPDQ\ ,6%1 
 
 
 
 
 
 H,6%1
 
 
 
 
 
 
 
 ZZZELUNKDXVHUFK
 
 
 
 
 
 Dedicated to our families
 
 Contents 1
 
 2
 
 Introduction 1.1 Historical remarks . . . . . . . . . . 1.2 On inequalities for higher derivatives 1.3 On methods . . . . . . . . . . . . . . 1.4 Survey of the contents . . . . . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 . . . .
 
 1 1 3 5 6
 
 Basic coefficient inequalities 2.1 Subordinate functions . . . . . . . . . . . 2.2 Bieberbach’s conjecture by de Branges . . 2.3 Theorems of Jenkins and Sheil-Small . . . 2.4 Inverse coefficients . . . . . . . . . . . . . 2.5 Domains with bounded boundary rotation
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 . . . . .
 
 7 7 11 15 18 23
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 . . . . . .
 
 27 27 30 33 37 40 44
 
 Basic Schwarz-Pick type inequalities 4.1 Two classical inequalities . . . . . . . . . . 4.2 Theorems of Ruscheweyh and Yamashita . 4.3 Pairs of simply c		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	