Schwarzian Derivatives I
The Schwarzian derivative introduced in this chapter is the main tool which enables one to connect the theory of orbifolds with the theory of linear differential equations. We give extensive computations since they are easy and enlightening, especially in
- PDF / 10,421,791 Bytes
- 230 Pages / 439.37 x 666.142 pts Page_size
- 9 Downloads / 168 Views
Masaaki Yoshida
Fuchsian differential equations With special emphasis on the Gauss-Schwarz theory
Masaaki Yoshida
Fuchsian Differential Equations
Asp3ds of Mathematics As~derMathematik
Editor: Klas Diederich
Vol. EJ:
G. Hector/U. Hirsch, lntroduction to the Geometry of Foliatians, Part A
Vol. E2:
M. Knebusch/M. Kolster, Wittrings
Vol. E3:
G. Hector/U. Hirsch, lntraduction ta the Geometry of Foliations, Part B
Vol. E4:
M. Laska, Elliptic Curves over Number Fields with Prescribed Reduction Type
Val. E5:
P. Stiller, Automorphic Formsand the Picard Number of an Elliptic Surface
Vol. E6:
G. Faltings/G. Wüstholzet al., Rational Points (A Publication of the Max-Pianck-lnstitut für Mathematik, Bonn)
Vol. E7:
W. Stoll, Value Distribution Theory for Meromorph ic Maps
Vol. E8:
W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations
Val. E9:
A. Haward, P.-M. Wong (Eds.), Contributians to Several Camplex Variables
Vol. E10: A. J. Tromba, Seminar on New Results in Nonlinear Partial Differential Equations (A Publication of the Max-Pianck-lnstitut für Mathematik, Bonn)
Vol. E11: M. Yoshida, Fuchsian Differential Equations (A Pub I ication of the Max-Pianck-1 nstitut für Mathematik, Bonn)
Band D1:
H. Kraft, Geometrische Methoden in der Invariantentheorie
Masaaki Yoshida
Fuchsian Differential Equations With Special Emphasis on the Gauss-Schwarz Theory
A Publication of the Max-Pianck-lnstitut für Mathematik, Bann Adviser: Friedrich Hirzebruch
Springer Fachmedien Wiesbaden GmbH
Professor Masaaki Yoshida Kyushu University , Fukuoka, Japan
AMS Subject Classification : 35 R 25, 35R 30, 45A05 , 45 L05, 65F 20
1987 All rights reserved © Springer FachmedienWiesbaden 1987 Originally published by Friedr.Vieweg & Sohn VerlagsgesellschaftmbH, Braunschweig in 1987.
No part of th is publication may be reproduced , stored in a retrieval system or transmitted in any form or by any means, electronic, mechan ical , photocopying, recording or otherwise, w ithout prior permission of the copyright holder .
Produced by W. Langelüddecke , Braunschweig
ISSN
0179-2156
ISBN 978-3-528-08971-9 ISBN 978-3-663-14115-0 (eBook) DOI 10.1007/978-3-663-14115-0
Contents
Introduetion Notations Part
I
Chapter 1 § 1.1 1.2 § 1.3 1.4 1.5 1.6
Hypergeometrie Differential Equations ........... 1 Hypergeometrie Series ........................... 1 Hypergeometrie Equations ........................ 2 Contiguity Relations ............................ 3 Euler's Integral Representation ................. 5 Rarnes' Integral Representation ................ 11 Lonfluent Hypergeometrie Equations ............. 12
Chapter 2 § 2.1 § 2. 2 2. 3
General Theory of Differential Equations I .... 14 How to Write Differential Equations ............ 14 Cauehy's Fundamental Theorem ................... 15 Monodromy Representations of Differential Equations ....................................... 16 Regular Singularities .......................... 18 The Frobenius Method ........................... 20 Fuehsian Equations ..........
Data Loading...