Sensing with Ion Channels
All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Sensations of touch, hearing, sight, taste, smell or pain are essential to the survival of all living organisms. The importance of sensory input
- PDF / 13,851,084 Bytes
- 322 Pages / 452.494 x 665.507 pts Page_size
- 59 Downloads / 241 Views
Boris Martinac (Ed.)
Sensing with Ion Channels
Springer Series in Biophysics 11
Boris Martinac Editor
Sensing with Ion Channels
Professor Boris Martinac Foundation Chair of Biophysics School of Biomedical Sciences University of Queensland Brisbane QLD 4072 Australia [email protected]
ISBN: 978-3-540-72683-8
e-ISBN: 978-3-540-72739-2
Springer Series in Biophysics ISSN: 0932-2353 Library of Congress Control Number: 2007932178 © 2008 Springer-Verlag Berlin Heidelberg This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, roadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper 9 8 7 6 5 4 3 2 1 springer.com
Preface
Life as we know it would not exist without the ability of living organisms to sense the surrounding environment and respond to changes within it. All living cells are able to detect and translate environmental stimuli into biologically meaningful signals. Without mechanisms to receive sensations of touch, hearing, sight, taste, smell or pain, the outside world would cease to exist for any living being that has to rely on these mechanisms for its survival. The importance of sensory input for the existence of life thus seems obvious, justifying the effort made to understand its molecular origins. Living cells are surrounded by a plasma membrane that forms a boundary between the cell interior and the external physical world. As a consequence, the cellular plasma membrane presents a major target for environmental stimuli acting upon a living cell. The membrane contains protein molecules that confer various functions on it. Many such membrane protein molecules are ion channels, which function as molecular sensors of physical and chemical stimuli and convert these stimuli into biological signals vital for the existence of every living organism, be it microbe, plant, animal or human being. As molecular transducers of mechanical, electrical, chemical, thermal or electromagnetic (light) stimuli, ion channels contribute to changes in electrical, chemical or osmotic activity within cells by gating between the two basic conformations in which they exist – open and closed. By opening and closing, ion channels regulate the transport of ions (in some cases also other solutes), which can thus enter or exit living cells and affect their activity. The
Data Loading...