Service Systems Science
The present volume illustrates a rich and promising research field in service, service systems sciences, by combining and fusing two strands of sciences: the science of service systems and systems sciences of service. The scale, complexity, and interdepen
- PDF / 4,232,137 Bytes
- 182 Pages / 439.42 x 683.15 pts Page_size
- 51 Downloads / 230 Views
Kyoichi Kijima Editor
Service Systems Science
Translational Systems Sciences Volume 2
Editors in Chief Kyoichi Kijima, Tokyo, Japan Hiroshi Deguchi, Yokohama, Japan Editorial Board Shingo Takahashi, Tokyo, Japan Hajime Kita, Kyoto, Japan Toshiyuki Kaneda, Nagoya, Japan Akira Tokuyasu, Tokyo, Japan Koichiro Hioki, Kyoto, Japan Yuji Aruka, Tokyo, Japan Kenneth Bausch, Riverdale, GA, USA Jim Spohrer, San Jose, CA, USA Wolfgang Hofkirchner, Vienna, Austria John Pourdehnad, Philadelphia, PA, USA Mike C. Jackson, Hull, UK
More information about this series at http://www.springer.com/series/11213
In 1956, Kenneth Boulding explained the concept of General Systems Theory as a skeleton of science. The hope was to develop something like a “spectrum” of theories—a system of systems which might perform the function of a “gestalt” in theoretical construction. Such “gestalts” in special fi elds have been of great value in directing research towards the gaps which they reveal. There were, at that time, other important conceptual frameworks and theories, including cybernetics. Additional theories and applications developed later, such as synergetics, cognitive science, complex adaptive systems, and many others. Some focused on principles within specifi c domains of knowledge and others crossed areas of knowledge and practice, along the spectrum described by Boulding. Also in 1956, the Society for General Systems Research (now the International Society for the Systems Sciences) was founded. One of the concerns of the founders, even then, was the state of the human condition, and what science could do about it. The present Translational Systems Sciences book series aims at cultivating a new frontier of systems sciences for contributing to the need for practical applications that benefit people. The concept of translational research originally comes from medical science for enhancing human health and well-being. Translational medical research is often labeled as “Bench to Bedside.” It places emphasis on translating the findings in basic research (at bench) more quickly and efficiently into medical practice (at bedside). At the same time, needs and demands from practice drive the development of new and innovative ideas and concepts. In this tightly coupled process it is essential to remove barriers to multi-disciplinary collaboration. The present series attempts to bridge and integrate basic research founded in systems concepts, logic, theories and models with systems practices and methodologies, into a process of systems research. Since both bench and bedside involve diverse stakeholder groups, including researchers, practitioners and users, translational systems science works to create common platforms for language to activate the “bench to bedside” cycle. In order to create a resilient and sustainable society in the twenty-first century, we unquestionably need open social innovation through which we create new social values, and realize them in society by connecting diverse ideas and developing new solutions. We assume three
Data Loading...