Simultaneous use of Interphako interference contrast and polarization microscopy in the study of microorganisms
- PDF / 633,862 Bytes
- 6 Pages / 595.276 x 790.866 pts Page_size
- 49 Downloads / 173 Views
ORIGINAL ARTICLE
Simultaneous use of Interphako interference contrast and polarization microscopy in the study of microorganisms Zdeněk Žižka 1 Received: 1 May 2020 / Accepted: 10 November 2020 # Institute of Microbiology, Academy of Sciences of the Czech Republic, v.v.i. 2020
Abstract Simultaneous application of polarization microscopy and Interphako interference contrast has been used to study the internal structure of algal cells. The interference contrast technique showed fine cell structures (important is the selection of interference colors according to the Mach-Zehnder interferometer setting). In a polarization microscope, the crossed polarization filters together with the first-order quartz compensator mounted turntable showed the maximum birefringence of the individual structures. Material containing green algae was collected in the villages Sýkořice and Zbečno, Protected Landscape Area (PLA) Křivoklátsko. The objects were studied in a Carl Zeiss Jena NfpK laboratory microscope equipped with an In 160 base body with an Interphako In contrast interference module including a Mach-Zehnder interferometer with variable phase contrast, a special condenser with interchangeable aperture plates, a turntable, a Meopta Praha polarizer, a LOMO Sankt Petersburg analyzer, and a quartz compensator with first-order red and the digital camera DSLR Nikon D 70. Green algae of three orders were studied: Siphonocladales, Zygnematales, and Desmidiales. Anisotropic structures were found in all studied representatives of the green algae of the phylum Chlorophyta. Especially their cell walls showed strong birefringence (in all representatives of these orders). On the other hand, a representative of the order Siphonocladales (the genus Cladophora, Cladophoraceae, Ulvophyceae) was rarely found to display weak birefringent granules of storage substances due to the setting of the Mach-Zehnder interferometer and the use of the first-order compensator (interference colors are intensified). In addition, a very weak birefringence of periphyton cells (microbial biofilm) was found. In the study of the second algae of the genus Spirogyra (Zygnemataceae, Zygnematales, Conjugatophyceae), a strongly birefringent connecting wall between algal cells was found in contrast to the weaker birefringence of the peripheral wall. It was the use of Interphako interference contrast together with polarization filters and a first-order quartz compensator that particularly emphasized the central part of the connecting wall. In the study of the twinned Pleurotaenium algae (Desmidiaceae, Desmidiales, Conjugatophyceae), a strongly birefringent wall was found along the periphery of the cell with a nucleus in the middle part (isthmus). In this narrowing in the center of the cell, a sharply delimited birefringent edge of the cell wall is visible, especially when using Interphako interference contrast along with crossed polarization filters and a first-order quartz compensator. In conclusion, Interphako interference contrast provides a high degree of image contras
Data Loading...