Size dependence in one-dimensional nano-materials and one-dimensional heterojunctions
- PDF / 962,702 Bytes
- 11 Pages / 612 x 792 pts (letter) Page_size
- 93 Downloads / 149 Views
0931-KK05-05
Size dependence in one-dimensional nano-materials and one-dimensional heterojunctions Jing Zhu, Jun Luo, Changqiang Chen, Yu Shi, Xiaohua Liu, Jiong Zhang, Kuiqing Peng, and Zhipeng Huang Department of Materials Science and Engineering, Tsinghua University, Chengfu Road, Beijing, Beijing, 100084, China, People's Republic of
ABSTRACT Nano-science and nano-technology are a significant scientific field of research. As one of the leading universities in China, Tsinghua University has carried out the education of nanoscience and nano-engineering in both the undergraduate and the graduate levels. By the education of nano-science and nano-engineering, many important achievements of nano-science and nano-technology have been made in Tsinghua University. For example, our group has carried out researches on synthesis, structure and property of one-dimensional (1D) nanomaterials. First, size effects on the crystal structure of Ag nanowires and on Young's modulus in [0001] oriented ZnO nanowires, respectively, have been revealed and modeled. The former is concerning the systemic energy of an individual Ag nanowire. The latter is caused by the surface stiffening effect arising from surface relaxation induced bond length contractions in the ZnO nanowires. Second, structures of 1D helical nano-materials including SWCNT (single-walled carbon nanotube), B-DNA and MWCNT (mutli-walled carbon nanotube) have been studied. It is shown that there is strong orientation dependence of diffraction intensities from SWCNT and BDNA, which can even result in certain layer lines missing in their diffraction patterns. Also, it is demonstrated that high-resolution transmission electron microscope (TEM) images of sidewall regions of MWCNTs are not structural ones and from the interference of the {0002} and the { 10 11 } diffraction waves. Third, arrays of four types of 1D heterojunctions have been synthesized. Among these 1D heterojunctions, the interfacial structures of the Ni/MWCNT/aCNT(amorphous carbon nanotube) heterojunctions show that multiple outer walls in the MWCNTs can simultaneously participate in electrical transport. The electrical properties of the Ni/MWCNT/a-CNT and the Ag/a-CNT heterojunctions have been measured. As a result, it is found that the contacts between the Ag nanowires and the a-CNTs are ohmic ones with universal significance, and that each Ni/MWCNT/ a-CNT contains two diodes connected in series face-toface. Moreover, most of the diodes have the most nearly ideal characteristics of Schottky contacts, indicated by quantitative analysis with the thermionic emission theory. Last, our group has developed a novel technique for rapidly producing large-area highly-oriented Si nanowire arrays on Si wafers by scratching the Si surface with metal nanoparticles near room temperature in HF solution. By this method, Si nanowires with desirable axial crystallographic directions, desirable doping characteristics and remarkable antireflection property can be readily obtained. The Si nanowire arrays have the potential applica
Data Loading...