SOCS-1 potentiates Pasteurella multocida toxin induced cell transformation
- PDF / 74,095 Bytes
- 1 Pages / 610 x 792 pts Page_size
- 8 Downloads / 178 Views
BioMed Central
Open Access
Meeting abstract
SOCS-1 potentiates Pasteurella multocida toxin induced cell transformation D Hildebrand*, K Heeg and KF Kubatzky Address: Universität Heidelberg, Medizinische Mikrobiologie und Hygiene, Heidelberg, Germany * Corresponding author
from 12th Joint Meeting of the Signal Transduction Society (STS). Signal Transduction: Receptors, Mediators and Genes Weimar, Germany. 29–31 October 2008 Published: 26 February 2009 Cell Communication and Signaling 2009, 7(Suppl 1):A46
doi:10.1186/1478-811X-7-S1-A46
12th Joint Meeting of the Signal Transduction Society (STS). Signal Transduction: Receptors, Mediators and Genes
Frank Entschladen, Karlheinz Friedrich, Ralf Hass and Ottmar Janssen Meeting abstracts – A single PDF containing all abstracts in this Supplement is available here.This abstract is available from: http://www.biosignaling.com/content/7/S1/A46 © 2009 Hildebrand et al; licensee BioMed Central Ltd.
Pasteurella multocida toxin (PMT) is a mitogenic protein toxin that modulates mammalian signalling cascades. In pigs, PMT causes atrophic rhinitis characterized by loss of nasal turbinates. Experimental nasal infection leads to excess proliferation of bladder epithelial cells suggesting it has carcinogenic properties. Recently we showed that PMT induces signal transducers and activators of transcription (STAT) activity through Gαq mediated activation of JAK kinases. Activation of the JAK-STAT pathway is persistent, as PMT does not induce expression of suppressor of cytokine signalling (SOCS) proteins. We overexpressed SOCS-1 in HEK293 cells to investigate if this would downregulate PMT-induced STAT activation. However, STAT activity was not abrogated; instead, SOCS1 enhanced STAT3 activity significantly. To test if this effect was specific for SOCS-1, we expressed SOCS-1, -3 or CIS and monitored STAT3 transcriptional activity. Hyperactivation of STAT3 correlated with the nuclear localization of the SOCS protein and SOCS-1 was a much stronger activator than SOCS-3, while CIS did not enhance STAT activity. However, a CIS mutant containing the SOCS-1 nuclear localisation sequence (NLS) acted as potently as SOCS-1. We next determined the phosphorylation status and expression of the STAT3 activating tyrosine kinase JAK2. Interestingly, JAK2 expression levels were increased in the presence of SOCS-1 eventually leading to hyperphosphorylation of JAK2. It is known that SOCS proteins act as E3 ubiquitin ligases that target proteins, for example JAK kinases, to proteasomal degradation. Oncogenic kinases such as Bcr-Abl can overcome this process through activation of pathways that lead to serine
phosphorylation of SOCS-1. It is believed that Pim serine/ threonine kinases are crucial for this. Pim kinases are STAT dependent genes and the protein was shown to interact with SOCS-1 directly. Cells stimulated with PMT showed high Pim-1 expression that increased with time and were strongest after over-night stimulation, while IL6-stimulated cells downregulated Pim-1 expression withi
Data Loading...