Solution of binary multiphase diffusion problems allowing for variable diffusivity, with application to the aluminizatio

  • PDF / 435,195 Bytes
  • 4 Pages / 612 x 792 pts (letter) Page_size
  • 98 Downloads / 182 Views

DOWNLOAD

REPORT


dxs_ 1 { ON6} dt 1-N6~ 0+D6~ - Xs

[la]

s o l u t i o n p h a s e s , r e s p e c t i v e l y , and the s i g n i f i c a n c e of the s u b s c r i p t s i s c l a r i f i e d in F i g . 1. A v a i l a b l e d a t a 6"~'12 i n d i c a t e t h a t D v a r i e s by l e s s than a f a c t o r of two o v e r the E and ~ p h a s e s and a cons t a n t a v e r a g e v a l u e of D m a y be u s e d for e a c h of t h e s e p h a s e s . The c o n c e n t r a t i o n p r o f i l e s in the E and ~ p h a s e s a r e , t h e r e f o r e , t a k e n to be of the u s u a l e r r o r - f u n c t i o n type: ,~ N~ = N e h - ( N c 5 - : ~ c ~

~ { e r f 0 " c a ~ c ) - e r f ( x / 2 D4~et)} {erf(rc~Se )_erf(rcac~) }

[2a] ~{1 - e r r (x/2 D~D~t)} ,\r~ = N~ ~ _ ( N ~ o _ l ~c) {1 - erf(r~c~c~) }

[2b]

where )-r = x/-D-~; ~'~ = fD~D-~; D = 0 5 (N = Nhr As shown in F i g . 2, the i n t e r d i f f u s i o n c o e f f i c i e n t in the 5 p h a s e v a r i e s s t r o n g l y with c o m p o s i t i o n . * The *Measurements of D in ~ were carried out by analysis of the concentration profiles of Nl specimens pack-aluminized under conditions of constant surface composition 4`s using Wagner's equation 9

c o n c e n t r a t i o n p r o f i l e w i l l not c o n f o r m to an equation of the type [2], and is u n l i k e l y to obey any s i m p l e a n a l y t i c a l e x p r e s s i o n . In this c a s e , it is e x p e d i e n t to s e e k a n u m e r i c a l s o l u t i o n of the diffusion equation f o r the 5 p h a s e and this i s s i m p l i f i e d if D 5 can be e x p r e s s e d a s a function of c o m p o s i t i o n . A r e a s o n a b l e fit of the diff u s i v i t y d a t a i s o b t a i n e d by an e x p r e s s i o n of the type D 6 = D0 exp (pN 6) [3] for e a c h b r a n c h of the d i f f u s i v i t y c u r v e , with the cons t a n t s Do and p o b t a i n e d f r o m a l e a s t - s q u a r e s fit of e a c h b r a n c h of the log D vs N 5 plot shown in F i g . 2. The d i f f u s i o n equation in the 5 p h a s e

ON5 = a [ D

a~__fi~

ot o x k 6 ox ) is then t r a n s f o r m e d to an o r d i n a r y d i f f e r e n t i a l equation ~

d2y

2 D

dy

- + 2~-A~ ~d~ =0 Do

[4]

IS]

by s u b s t i t u t i o n of the new v a r i a b l e s 1~ y = exp(pN5) and z = x / 2 a 6 c 4 - ~ (z = 1, at x = x6e ).

[6]

To s o l v e Eq. [5], the following s t e p s a r e c a r r i e d out: 1) U s i n g the e r r o r - f u n c t i o n s o l u t i o n s [2a] and [2b] f o r the ~ and ~ p h a s e s , Eq. [ l c ] m a y be w r i t t e n r e { e r f (reote~) - e r f ( t e a S e ) }

dt

N6c--Ne51-

dxcc _ 1 { dt N~- N~e.-Dr

60x ONe

+Dc-~-Jx6c

[lb]

ON~ ] + D~-~-Ixr

[lc]

In t h e s e equations N r e p r e s e n t s a t o m f r a c t i o n of A1; 5, r and ~ r e p r e s e n t the NiA1, Ni3A1 and N i - r i c h s o l i d A. K. SARKHEL and L. L. SEIGLE are Research Assistant and Professor, respectively, Department of Materials Science, State Umversity of New York, Stony Brook, NY 11790. Manuscript submitted July 14, 1975. METALLURGICAL