Sphere Packings, Lattices and Groups

The second edition of this timely, definitive, and popular book continues to pursue the question: what is the most efficient way to pack a large number of equal spheres in n-dimensional Euclidean space? The authors also continue to examine related problem

  • PDF / 52,694,336 Bytes
  • 724 Pages / 439.37 x 666.14 pts Page_size
  • 51 Downloads / 245 Views

DOWNLOAD

REPORT


Editors

M. Artin S.S. Chern 1. Coates 1.M. Frohlich H. Hironaka F. Hirzebruch L. Hormander C.C. Moore 1.K. Moser M. Nagata W. Schmidt D.S. Scott Ya.O. Sinai 1. Tits M. Waldschmidt S. Watanabe Managing Editors

M. Berger B. Eckmann S.R.S. Varadhan

Grundlehren der mathematischen Wissenschaften A Series of Comprehensive Studies in Mathematics

A Selection 200. 20 I. 202. 203. 204. 205. 206. 207. 208. 209. 210. 211. 212. 213. 214. 215. 216. 217. 218. 219. 220. 221. 222. 223. 224. 225. 226. 227. 228. 229. 230. 231. 232. 233. 234. 235. 236. 237. 238. 239. 240. 241. 242. 243. 244. 245. 246. 247.

Dold: Lectures on Algebraic Topology Beck: Continuous Flows in the Plane Schmetterer: Introduction to Mathematical Statistics Schoeneberg: Elliptic Modular Functions Popov: Hyperstability of Control Systems Nikol'skii: Approximation of Functions of Several Variables and Imbedding Theorems Andre: Homologie des Algebres Commutatives Donoghue: Monotone Matrix Functions and Analytic Continuation Lacey: The Isometric Theory of Classical Banach Spaces Ringel: Map Color Theorem Gihman/Skorohod: The Theory of Stochastic Processes I ComfortlNegrepontis: The Theory of Ultrafilters Switzer: Algebraic Topology-Homotopy and Homology Shafarevich: Basic Algebraic Geometry van der Waerden: Group Theory and Quantum Mechanics Schaefer: Banach Lattices and Positive Operators P6lyalSzego: Problems and Theorems in Analysis II Stenstrom: Rings of Quotients Gihman/Skorohod: The Theory of Stochastic Process II DuvantlLions: Inequalities in Mechanics and Physics Kirillov: Elements of the Theory of Representations Mumford: Algebraic Geometry I: Complex Projective Varieties Lang: Introduction to Modular Forms Bergh/Lofstrom: Interpolation Spaces. An Introduction Gilbarg/Trudinger: Elliptic Partial Differential Equations of Second Order Schutte: Proof Theory Karoubi: K-Theory, An Introduction Grauert/Remmert: Theorie der Steinschen Riiume Segal/Kunze: Integrals and Operators Hasse: Number Theory Klingenberg: Lectures on Closed Geodesics Lang: Elliptic Curves: Diophantine Analysis Gihman/Skorohod: The Theory of Stochastic Processes III StroocklVaradhan: Multi-dimensional Diffusion Processes Aigner: Combinatorial Theory Dynkin/Yushkevich: Markov Control Processes and Their Applications GrauertlRemmert: Theory of Stein Spaces Kothe: Topological Vector-Spaces II Graham/McGehee: Essays in Commutative Harmonic Analysis Elliott: Probabilistic Number Theory I Elliott: Probabilistic Number Theory II Rudin: Function Theory in the Unit Ball of C" Huppert/Blackburn: Finite Groups I Huppert/Blackburn: Finite Groups II KubertlLang: Modular Units Cornfeld/Fomin/Sinai: Ergodic Theory NaimarklStern: Theory of Group Representations Suzuki: Group Theory I continued after Index

lH. Conway

N .lA. Sloane

Sphere Packings, Lattices and Groups Second Edition With Additional Contributions by E. Bannai, R.E. Borcherds, J. Leech, S.P. Norton, A.M. Odlyzko, R.A. Parker, L. Queen and B. B. Venkov

With 112 Illustrations

Springer Science+Business Media, LLC

J.R. Conway Mathemat