Splitting Deformations of Degenerations of Complex Curves Towards th

The author develops a deformation theory for degenerations of complex curves; specifically, he treats deformations which induce splittings of the singular fiber of a degeneration. He constructs a deformation of the degeneration in such a way that a s

  • PDF / 5,539,585 Bytes
  • 583 Pages / 441.551 x 677.046 pts Page_size
  • 24 Downloads / 159 Views

DOWNLOAD

REPORT


H]^\ZgjIV`VbjgV

4QMJUUJOH%FGPSNBUJPOT PG%FHFOFSBUJPOT PG$PNQMFY$VSWFT 5PXBSETUIF$MBTTJGJDBUJPO PG"UPNTPG%FHFOFSBUJPOT ***



 

Shigeru Takamura

Splitting Deformations of Degenerations of Complex Curves Towards the Classification of Atoms of Degenerations, III

ABC

Author Shigeru Takamura Department of Mathematics Graduate School of Science Kyoto University Oiwakecho, Kitashirakawa Sakyo-Ku, Kyoto 606-8502 Japan e-mail: [email protected]

Library of Congress Control Number: 2006923235 Mathematics Subject Classification (2000): 14D05, 14J15 14H15, 32S30 ISSN print edition: 0075-8434 ISSN electronic edition: 1617-9692 ISBN-10 3-540-33363-0 Springer Berlin Heidelberg New York ISBN-13 978-3-33363-0 Springer Berlin Heidelberg New York DOI 10.1007/b138136

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable for prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com c Springer-Verlag Berlin Heidelberg 2006  Printed in The Netherlands The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. A EX package Typesetting: by the authors and SPi using a Springer LT Cover design: design & production GmbH, Heidelberg

Printed on acid-free paper

SPIN: 11735212

41 3100/ SPi

543210

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1

Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 Part I Basic Notions and Ideas 1

Splitting Deformations of Degenerations . . . . . . . . . . . . . . . . . . . 23 1.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 1.2 Splitting criteria via configuration of singular fibers . . . . . . . . . . 30

2

What is a barking? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.1 Barking, I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 2.2 Barking, II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3

Semi-Local Barking Deformations: Ideas and Examples . . . . 3.1 Semi-local example, I (Reduced barking) . . . . . . . . . . . . . . . . . . . 3.2 Semi-local example, II (Multiple barking) . . . . . . . . . . . . .