Stability of Motion

The theory of the stability of motion has gained increasing signifi­ cance in the last decades as is apparent from the large number of publi­ cations on the subject. A considerable part of this work is concerned with practical problems, especially problem

  • PDF / 35,287,437 Bytes
  • 459 Pages / 439.32 x 666.12 pts Page_size
  • 77 Downloads / 182 Views

DOWNLOAD

REPORT


H ertlll.rgegebell

VOll

]. L. Doob . E. Heinz· F. Hirzcbruch . E. Hopf . H. Hopf

W. Maak . S. Mac Lane· W. Magnus. D. Mumford Iv1. M. Postnikov . F. K. Schmidt· D. S. Scott· K. Stein

Ge.rchdjiJji(/, rellde H erall.rgeber B. Eckmann und B. L. van der Waerdcn

Wolfgang Hahn

Stability of Motion Translated by

Arne P. Baartz

With 63 Figures

Springer-Verlag New York Inc. 1967

Professor Dr. phi!. \:Volfgang Hahn Technische Huchschtlle Graz Graz (.\115tria)

Professor _,'une P. Baartz, Ph. D. Univcrsity of Vktoria Department of Mathcmatirs, \'jetoria (British CnhtllllJia:'

Geschdftsführende Herausgcut.'r:

Professor Dr. B. Eckmann Eidgenössische Technische Hochschule Zürich

Professor Dr. B. 1.. van der \Vaerdcn Mathematisches Institut der Cnivefsitüt Zürich

ISBN 978-3-642-50087-9 ISBN 978-3-642-50085-5 (eBook) DOI 10.1007/978-3-642-50085-5

All rights rcserved, especially that of translation into forcign lallguages. It is abo forbidden to reproducc this bOGk, cithcr wholc 01' in part, uy phntolllcchanical means (phOt05t to' Fig. 2.1. Trajectories in the (I, x)-plane possibly requiring a different value for O. For the spherical neighborhood of zero at to is mapped by the graphs of the solutions onto a neighborhood of zero at tl which of course contains a certain ball Ix I< 01 entirely in its interior. If we choose IXII < 01 , (2.2) implies that Ip (t, xl> t l ) I < e for t ;::::: t l . It is therefore unnecessary to require in Def. 2.1 that the desired property hold for all to. We must however keep in mind that the number 0 depends on to (cf. sec. 3u, uniform stability) . Def. 2.2. The equilibrium of the differential equation (2.1) is called attractive if there exists a number 'Y} > 0 having the property : ~

(2.4)

lim p (t, x o' to) = 0

t-+~

whenever

IXo I