Strain Effect in Semiconductors Theory and Device Applications

Strain Effect in Semiconductors: Theory and Device Applications presents the fundamentals and applications of strain in semiconductors and semiconductor devices that is relevant for strain-enhanced advanced CMOS technology and strain-based piezoresistive

  • PDF / 9,069,061 Bytes
  • 352 Pages / 439.37 x 666.142 pts Page_size
  • 45 Downloads / 156 Views

DOWNLOAD

REPORT


Yongke Sun • Scott E. Thompson • Toshikazu Nishida

Strain Effect in Semiconductors Theory and Device Applications

123

Yongke Sun SanDisk Corporation 601 McCarthy Boulevard Milpitas, CA 95035 USA [email protected] Scott E. Thompson University of Florida Department Electrical & Computer Engineering Gainesville, FL 32611 535, Engineering Bldg. USA [email protected]

Toshikazu Nishida University of Florida Department Electrical & Computer Engineering 223 Benton Hall Gainesville FL 32611-6200 USA [email protected]

ISBN 978-1-4419-0551-2 e-ISBN 978-1-4419-0552-9 DOI 10.1007/978-1-4419-0552-9 Springer New York Dordrecht Heidelberg London Library of Congress Control Number: 2009938434 c Springer Science+Business Media, LLC 2010 ° All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Contents

1

Overview: The Age of Strained Devices . . . . . . . . . . . . . . . . . . . . 1.1 Origin of the Strained-Si Technology . . . . . . . . . . . . . . . . . . . . . . 1.2 Strain in Semiconductor Devices . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.1 Conventional Simple Scaling . . . . . . . . . . . . . . . . . . . . . . . 1.2.2 Feature-Enhanced CMOS . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3 Variable Strain Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4 Strained Quantum Well Optoelectronics . . . . . . . . . . . . . 1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

1 1 1 2 2 4 4 5

Part I Band Structures of Strained Semiconductors 2

Stress, Strain, Piezoresistivity, and Piezoelectricity . . . . . . . . 2.1 Strain Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2 Stress Tensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.3 Elastic Compliance and Stiffness Constants . . . . . . . . . . . . . . . . 2.4 Examples of Stress–Strain Relations . . . . . . . . . . . . . . . . . . . . . . . 2.4.1 Hydrostatic and Shear Strain . . . . . . . . . . . . . . . . . . . . . . . 2.5 Piezoresistivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.6 Piezoelectricity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

9 9 11 14 16 1