Synthesis, Structure and Reactivity of Group 13/15 Compounds Containing the Heavier Elements of Group 15, Sb and Bi

Triorganostibines and -bismuthines ER′3, as well as tetraorganodistibines and -dibismuthines E2R′4 (E = Sb, Bi) react with trialkylalanes, -gallanes and -indanes R3M (M = Al, Ga, In) under formation of simple Lewis acid-base adducts of the type R3M—ER3′ a

  • PDF / 1,713,269 Bytes
  • 50 Pages / 439 x 666 pts Page_size
  • 42 Downloads / 158 Views

DOWNLOAD

REPORT


Triorganostibines and -bismuthines ER03 as well as tetraorganodistibines and -dibismuthines E2R¢4 (E = Sb, Bi) react with trialkylalanes, -gallanes and ±indanes R3M (M = Al, Ga, In) under formation of simple Lewis acid-base adducts of the type R3MAER¢3 and bisadducts of the type [R3M]2[E2R¢4]. Their structures and stabilities were investigated by single crystal Xray diffraction, NMR spectroscopy and theoretical calculations. In addition, general pathways for the synthesis of heterocycles [R2MSbR¢2]x will be presented. Stibinogallanes and -indanes can generally be prepared by dehalosilylation reactions, while stibinoalanes are formed by dehydrosilylation reactions. This particular pathway is also applicable for the synthesis of [Me2AlBi(Tms)2]3. In addition, MSb heterocycles (M = Al, Ga, In) can be synthesized by reaction of tetraorganodistibines and trialkylalanes, -gallanes and -indanes. Monomeric compounds R2MER¢2 and RMER¢ (M = Al, Ga; E = Sb, Bi) have not been reported to date, but Lewis base-stabilized monomers of the type baseÐM(R2)ER¢2 (M = Al, Ga; E = P, As, Sb, Bi) are formed by reaction of the corresponding heterocycle with 4(dimethylamino)pyridine (dmap). So prepared monomers react with transition metal complexes to give bimetallic complexes of the type baseÐM(R2)ER¢2AM(CO)n. Keywords: Aluminum, Gallium, Antimony, Bismuth, Structures

1

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.2 2.2.1

Lewis Acid-Base Adducts . . . . . . . . . . . . . . . . . . . . . . . . . Adducts of the Type R3MAER¢3 ± General Trends . . . . . . . . Synthesis of Group 13-Stibine and -Bismuthine Adducts . . . Temperature-Dependent NMR Investigations . . . . . . . . . . . Single Crystal X-Ray Structure Determinations . . . . . . . . . . Computational Calculations . . . . . . . . . . . . . . . . . . . . . . . . Bisadducts of the Type [R3M]2[E2R¢4] . . . . . . . . . . . . . . . . . Syntheses and Solid State Structures of Group 13-Distibine and -Dibismuthine Bisadducts . . . . . . . . . . . . . . . . . . . . . .

3 3.1 3.2 3.3 3.3.1

Heterocycles of the Type [R2MER¢2]x . . . . . . . . . . . . General Synthetic Pathways . . . . . . . . . . . . . . . . . . . Single Crystal X-Ray Structure Analyses . . . . . . . . . . Reactivity of Heterocycles . . . . . . . . . . . . . . . . . . . . Synthesis of Lewis Base-Stabilized Monomers of the Type BaseAM(R2)ER¢2 . . . . . . . . . . . . . . . . . . . . . . . 3.3.2 Solid State Structures ± General Trends . . . . . . . . . .

. . . .

. . . .

. . . .

. . . .

. . . .

. . . . . . .

. . . . . . .

. . . . . . .

. . . . . . .

121 121 124 126 127 132 134

. . . . 136 . . . .

. . . .

. . . .

. . . .

139 139 143 151

. . . . . . . . . 152 . . . . . . . . . 153

Structure and Bonding, Vol. 103 Ó Springer-Verlag Berlin Heidelberg 2002

118

S. Schulz

3.3.3 Transition Metal Complexes of Lewis Base-Stabilized Monomers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157 4

Conclusions . .