Table 2. Enthalpy and Heat Capacity Changes - Molar Values

  • PDF / 14,151,002 Bytes
  • 176 Pages / 547.08 x 765.36 pts Page_size
  • 21 Downloads / 196 Views

DOWNLOAD

REPORT


W. Pfeil, Protein Stability and Folding Supplement 1 © Springer-Verlag Berlin Heidelberg 2001

Acylphosphatase

285

Abrin Abrin II, type II ribosome-inactivating protein from Abrus precatorius pH

To.,

~Ht",

To.2

~H'''2

Appr.lRem.

Ref

abrin: 4.50 5.43 5.80 6.43 6.83 7.20 7.82 8.30 9.16 10.16

67.6 65.3 61.2 54.2 51.0 46.0 44.0 41.6 38.4 36.6

1356 1230 1125 1067 937 854 736 586 561 456

70.1 66.9 63.3 57.9 55.2 51.4 50.6 47.8 44.8 43.2

946 854 816 766 686 573 527 519 452 410

DSC DSC DSC DSC DSC DSC DSC DSC DSC DSC

99KI8 99KI8 99KI8 99K18 99KI8 99KI8 99K18 99KI8 99KI8 99KI8

49.7 49.0

494 506

DSC (1,2,5) DSC (1,2,5)

abrin A-subunit: 4.50 7.20

(1-4) (1-4) (1-4) (1-4) (1-4) (1-4) (1-4) (1-4) (1-4) (1-4)

99KI8 99KI8

Remarks: (1) results of deconvolution (2) buffers: 50 mM sodium acetate (pH 4.5-5.8),50 mM sodium phosphate (pH 6.4-7.9), 50 mM sodium borate (pH 8.3-9.2), 50 mM sodium carbonate (pH 10.16) (3) ~Cp from ~H'" versus To, amounts to 27±2 and 20±1 kJ/mol/K for the lower- and higher-temperature transition, respectively (4) Ref. 99K18 contains further data obtained in the presence oflactose and NaCI (5) measured in the presence of 5 mM 2-mercaptoethanol

Acylphosphatase Recombinant muscle acylphosphatase, thermodynamic parameters obtained at different urea concentrations urea conc.

pH

To.

~Cp

~H

Approach/Remarks

0.0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 0.0 0.0

5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50 5.50

56.5 54.6 52.6 50.7 48.2 45.4 43.1 40.0

6.15 6.07 6.28 6.19 5.86 6.19 6.20 5.77 6.15±0.60 6.61±0.70

351 335 324 305 286 276 256 238

heat heat heat heat heat heat heat heat heat heat

Remarks: (1) transition monitored by CD at 222 nm (2) measured in 50 mM acetate buffer with urea (3) experimental error 0.5°C for To.' 5% for ~H, and 10% for ~Cp (4) ~Cp in the absence of urea, extrapolated value (5) this value is considered as the best one, and was used in further calculations in Ref. 98C5 (6) ~Cp from ~HvH versus To. after taking into account the urea-protein interaction

(1-3) (1-3) (1-3) (1-3) (1-3) (1-3) (1-3) (1-3) (4,5) (6)

Ref 98C5 98C5 98C5 98C5 98C5 98C5 98C5 98C5 98C5 98C5

286

Table 2. Enthalpy and Heat Capacity Changes - Molar Values

Recombinant muscle acylphosphatase, wild type and lysine to glutamine mutants Mutant

pH

T,~

~H

Approach/Remarks

wild type

5.5 5.5 5.5 5.5 5.5 5.5

56.5 52.2 50.1 56.4 50.6 55.1

391 392 370 358 324 370

heat heat heat heat heat heat

Lys32~Gln Lys57~Gln Lys67~Gln Lys84~Gln Lys88~Gln

(1-3) (1-3) (1-3) (1-3) (1-3) (1-3)

Ref 98C6 98C6 98C6 98C6 98C6 98C6

Remarks: (1) transition monitored by CD at 222 nm (2) buffer: 50 mM acetate (3) the mean errors in Ttr, are ±1°C, and in ~H within ±1O% Common-type acylphosphatase (CT AcP) and muscle acylphosphatase (M AcP) Protein

pH

CTAcP MAcP

5.5 5.5

53.9±0.5 56.6±O.5

~Cp

~H

Appr.lRem.

Ref

6.10 6.35

290 350

heat (1,2) heat (3)

99Tl 99Tl

Remarks: (1) data from fitting the stability curve obtained by urea denaturation from 5 to 40°C, see also Table 1 (2) experimental error 5% for ~H, and 10% f