The Boundary Regularity of Minimal Surfaces

In this chapter we deal with the boundary behaviour of minimal surfaces with particular emphasis on the behaviour of stationary surfaces at their free boundaries. This and the following chapter will be the most technical and least geometric parts of our l

  • PDF / 64,530,916 Bytes
  • 435 Pages / 439.37 x 666.142 pts Page_size
  • 17 Downloads / 189 Views

DOWNLOAD

REPORT


Grundlehren der mathematischen Wissenschaften 296 ASeries 0/ Comprehensive Studies in Mathematics

Editors M. Artin S. S. Chern 1. Coates 1. M. Fröhlich H. Hironaka F. Hirzebruch L. Hörmander S. MacLane C. C. Moore 1. K. Moser M. Nagata W. Schmidt D. S. Scott Ya. G. Sinai 1. Tits M. Waldschmidt S.Watanabe

Managing Editors M. Berger B. Eckmann S. R. S. Varadhan

Ulrich Dierkes Stefan Hildebrandt Albrecht Küster Ortwin Wohlrab

Minimal Surfaces 11 Boundary Regularity

With 59 Figures and 4 Colour Plates

Springer-Verlag Berlin Heidelberg GmbH

Ulrich Dierkes Stefan Hildebrandt Albrecht Küster Universität Bonn, Mathematisches Institut Wegeierstraße 10, D-5300 Bonn, Federal Republic ofGermany Ortwin Wohlrab Mauerseglerweg 3, D-5300 Bonn, Federal Republic ofGermany

Mathematics Subject Classification (1991): 53A 10, 35J60

ISBN 978-3-662-08778-7

Library ofCongress Cataloging-in-Publication Data Minimal surfaceslUlrich Dierkes... [etaI.] v. cm. - (Grundlehren der mathematischen Wissenschaften; 295-296) Includes bibliographical references and indexes. Contents: I. Boundary value problems - 2. Boundary regularity. ISBN 978-3-662-08778-7 ISBN 978-3-662-08776-3 (eBook) DOI 10.1007/978-3-662-08776-3 I. Surfaces, Minimal. 2. Boundary value problems. I. Dierkes, Ulrich. 11. Series. QA644.M56 1992 516.3'62 - dc20 90-27155 CIP This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concemed, specificallythose oftranslation, reprinting, reuse ofillustrations, recitation, broadcasting, reproduction on microfilms or in other way, and storage in data banks. Duplication ofthis publication or parts thereofis permitted only under the provisions ofthe German Copyright Law ofSeptember 9, 1965, in its current version, and a copyright fee must always be obtained from Springer-Verlag Berlin Heidelberg GmbH. Violations fall under the prosecution act of the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1992

OriginaJly published by Springer-Verlag Berlin Heidelberg New Yoti0

whence we infer that VYh tends uniformly to z on every Q c c BR • Together with the uniform convergence of Yh to Y on Q c c BR as h -+ 0 we infer that Y E Cl (BR ) and Vy(w) = z(w) for any w E BR • Consequently

ly(w)1 + IVwY(w) I ~

LR {IH(w, ()I + IVwH(w, ()I} Iq(()ld

~ c(b, R)a

2(

for all w E BR ;

thus (13) is also verified. Now let Wl' W2 E BR , and set p:= IWl - w21. Then we infer from (15) that

7.1 Potential-Theoretic Preparations

11

Note that

and the mean value theorem implies

oH I 2bp loH ou (w 1, 0 - oU (W2' 0 ~ Iw* _ ,,2

for some w* = (1 - t)w 1 + tw2, 0< t < 1. If I( - w1 1;::: 2p, we infer that I( - w*1 ;::: I( - wll-lw l - w*1 ;:::

tl( -

wll,

and therefore

oH oH I 8bp (wl, 0 - ou (w 0 ~ I( _ wI12 lau 2,

for

i' - wd;::: 2p.

Thus we arrive at

:s;: ab[4np

+ 6np + 16np log~J :s;: ac(b, R, J-L)pl'

for any J-L E (0, 1) and p = IW1 - w2 1, and (14) is proved. Estimates (13) and (14) imply that y can be extended to ER as a function of dass C I 'I'(ER) for any J-L E (0,1). 0

Lemma