The challenge of quality in continuous casting processes

  • PDF / 2,111,215 Bytes
  • 14 Pages / 612 x 792 pts (letter) Page_size
  • 61 Downloads / 208 Views

DOWNLOAD

REPORT


The Challenge of Quality in Continuous Casting Processes

J.K. BRIMACOMBE

As in any process, the laws of nature are at work in the continuous casting of metals. Heat spills down temperature gradients under the watchful eye of Fourier, while molten metal moves in response to inertial and body forces governed by the Navier–Stokes equations. Tensile strains develop in the solidifying shell subject to changing cooling conditions, the constitutive behavior of the metal, compatibility, and the Prandtl–Reuss relations. Solutes segregate as thermodynamics compete with diffusion to create a heterogeneous solid from a homogeneous liquid. The challenge to the process engineer is to harness these laws to continuously cast a metal section that is free of cracks, has minimal macrosegregation, and has the desired shape. Confronted with the demands of production, cost containment, and an educationally challenged workforce, the obstacles are very real. One response to the challenge is to move knowledge to the shop floor, where wealth is created, through expert systems to educate the workforce and through artificial intelligence to make the continuous casting process “smart.” Harnessing knowledge for wealth creation, and profitability, is the real challenge.

The Edward DeMille Campbell Memorial Lecture was established in 1926 as an annual lecture in memory of and in recognition of the outstanding scientific contributions to the metallurgical profession by a distinguished educator who was blind for all but two years of his professional life. It recognizes demonstrated ability in metallurgical science and engineering. Dr. J. Keith Brimacombe delivered the 1996 Edward DeMille Campbell Memorial Lecture at the ASM-TMS Meeting in Cincinnati, OH. The written lecture was nearly complete at the time of his untimely passing on December 16, 1997 and has been finished and submitted by his colleague, Professor I.V. Samarasekera. On October 1, 1997, J. Keith Brimacombe was appointed the first President and Chief Executive Officer of the Canada Foundation for Innovation. This enterprise, newly established by the Federal Government of Canada, was provided with one billion dollars of funding with the objective of strengthening the nation’s research infrastructure in universities and hospitals. Sadly, Dr. Brimacombe was able to serve only 3 months of his term and succumbed to a massive heart attack on December 16, 1997, at the age of 54. Dr. Brimacombe held the Alcan Chair in Materials Process Engineering, The Centre for Metallurgical Process Engineering at the University of METALLURGICAL AND MATERIALS TRANSACTIONS B

British Columbia, prior to his appointment with the Canada Foundation for Innovation. He was born in Nova Scotia, raised in Alberta, and received his undergraduate education at UBC, obtaining a B.A.Sc. (Hons.) in 1966. With the support of a Commonwealth Fellowship, he traveled to England and studied under one of the great metallurgical thermochemists of this century, F.D. Richardson, F.R.S., at Imperial College of Science and Technolo