The General Theory of Differential Equations

In this chapter we recall some basic facts about systems of linear partial differential equations in the single unknown on open subsets of ℂn. Since the ring of linear partial differential operators is not a principal ideal domain when n ≧ 2, the situatio

  • PDF / 10,421,791 Bytes
  • 230 Pages / 439.37 x 666.142 pts Page_size
  • 10 Downloads / 214 Views

DOWNLOAD

REPORT


Masaaki Yoshida

Fuchsian differential equations With special emphasis on the Gauss-Schwarz theory

Masaaki Yoshida

Fuchsian Differential Equations

Asp3ds of Mathematics As~derMathematik

Editor: Klas Diederich

Vol. EJ:

G. Hector/U. Hirsch, lntroduction to the Geometry of Foliatians, Part A

Vol. E2:

M. Knebusch/M. Kolster, Wittrings

Vol. E3:

G. Hector/U. Hirsch, lntraduction ta the Geometry of Foliations, Part B

Vol. E4:

M. Laska, Elliptic Curves over Number Fields with Prescribed Reduction Type

Val. E5:

P. Stiller, Automorphic Formsand the Picard Number of an Elliptic Surface

Vol. E6:

G. Faltings/G. Wüstholzet al., Rational Points (A Publication of the Max-Pianck-lnstitut für Mathematik, Bonn)

Vol. E7:

W. Stoll, Value Distribution Theory for Meromorph ic Maps

Vol. E8:

W. von Wahl, The Equations of Navier-Stokes and Abstract Parabolic Equations

Val. E9:

A. Haward, P.-M. Wong (Eds.), Contributians to Several Camplex Variables

Vol. E10: A. J. Tromba, Seminar on New Results in Nonlinear Partial Differential Equations (A Publication of the Max-Pianck-lnstitut für Mathematik, Bonn)

Vol. E11: M. Yoshida, Fuchsian Differential Equations (A Pub I ication of the Max-Pianck-1 nstitut für Mathematik, Bonn)

Band D1:

H. Kraft, Geometrische Methoden in der Invariantentheorie

Masaaki Yoshida

Fuchsian Differential Equations With Special Emphasis on the Gauss-Schwarz Theory

A Publication of the Max-Pianck-lnstitut für Mathematik, Bann Adviser: Friedrich Hirzebruch

Springer Fachmedien Wiesbaden GmbH

Professor Masaaki Yoshida Kyushu University , Fukuoka, Japan

AMS Subject Classification : 35 R 25, 35R 30, 45A05 , 45 L05, 65F 20

1987 All rights reserved © Springer FachmedienWiesbaden 1987 Originally published by Friedr.Vieweg & Sohn VerlagsgesellschaftmbH, Braunschweig in 1987.

No part of th is publication may be reproduced , stored in a retrieval system or transmitted in any form or by any means, electronic, mechan ical , photocopying, recording or otherwise, w ithout prior permission of the copyright holder .

Produced by W. Langelüddecke , Braunschweig

ISSN

0179-2156

ISBN 978-3-528-08971-9 ISBN 978-3-663-14115-0 (eBook) DOI 10.1007/978-3-663-14115-0

Contents

Introduetion Notations Part

I

Chapter 1 § 1.1 1.2 § 1.3 1.4 1.5 1.6

Hypergeometrie Differential Equations ........... 1 Hypergeometrie Series ........................... 1 Hypergeometrie Equations ........................ 2 Contiguity Relations ............................ 3 Euler's Integral Representation ................. 5 Rarnes' Integral Representation ................ 11 Lonfluent Hypergeometrie Equations ............. 12

Chapter 2 § 2.1 § 2. 2 2. 3

General Theory of Differential Equations I .... 14 How to Write Differential Equations ............ 14 Cauehy's Fundamental Theorem ................... 15 Monodromy Representations of Differential Equations ....................................... 16 Regular Singularities .......................... 18 The Frobenius Method ........................... 20 Fuehsian Equations ..........