The H-Function Theory and Applications

The topics of special H-function and fractional calculus are currently undergoing rapid changes both in theory and application. Taking into account the latest research results, the authors delve into these topics as they relate to applications to problems

  • PDF / 5,961,438 Bytes
  • 276 Pages / 491.977 x 739.91 pts Page_size
  • 80 Downloads / 281 Views

DOWNLOAD

REPORT


The H-Function Theory and Applications

 

        

    

                           

                 

                                                                                                                                                        

  

                                                                                                                                                                                                                                         