The Number of Plane Diagrams of a Lattice

In this work we want to clarify, how many non-similar plane diagrams a planar lattice can have. In the first part demonstrate how to find all these diagrams by specifying all realizers, i.e. all pairs of linear orders whose intersection equals to the latt

  • PDF / 13,751,529 Bytes
  • 335 Pages / 430 x 660 pts Page_size
  • 17 Downloads / 158 Views

DOWNLOAD

REPORT


Subseries of Lecture Notes in Computer Science

4933

Raoul Medina Sergei Obiedkov (Eds.)

Formal Concept Analysis 6th International Conference, ICFCA 2008 Montreal, Canada, February 25-28, 2008 Proceedings

13

Series Editors Jaime G. Carbonell, Carnegie Mellon University, Pittsburgh, PA, USA Jörg Siekmann, University of Saarland, Saarbrücken, Germany Volume Editors Raoul Medina L.I.M.O.S. Université Blaise Pascal Clermont-Ferrand, France E-mail: [email protected] Sergei Obiedkov Higher School of Economics Moscow, Russia E-mail: [email protected]

Library of Congress Control Number: 2008920681

CR Subject Classification (1998): I.2, G.2.1-2, F.4.1-2, D.2.4, H.3 LNCS Sublibrary: SL 7 – Artificial Intelligence ISSN ISBN-10 ISBN-13

0302-9743 3-540-78136-6 Springer Berlin Heidelberg New York 978-3-540-78136-3 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. Springer is a part of Springer Science+Business Media springer.com © Springer-Verlag Berlin Heidelberg 2008 Printed in Germany Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India Printed on acid-free paper SPIN: 12227778 06/3180 543210

Preface

Formal Concept Analysis (FCA) is a mathematical theory of concepts and conceptual hierarchy leading to methods for conceptually analyzing data and knowledge. The theory itself strongly relies on order and lattice theory, which has been studied by mathematicians over decades. FCA proved itself highly relevant in several applications from the beginning, and, over the last years, the range of applications has kept growing. The main reason for this comes from the fact that our modern society has turned into an “information” society. After years and years of using computers, companies realized they had stored gigantic amounts of data. Then, they realized that this data, just rough information for them, might become a real treasure if turned into knowledge. FCA is particularly well suited for this purpose. From relational data, FCA can extract implications, dependencies, concepts and hierarchies of concepts, and thus capture part of the knowledge hidden in the data. The ICFCA conference series gathers researchers from all over the world, being the main forum to present new results in FCA and related fields. These results range from theoretical novelties to advances in FCA-related algorithmic issues, as well as application domains of FCA. ICFCA 2008 was in the same vein as its predecessors: high-quality papers an