The Riemann-Hilbert Problem A Publication from the Steklov Institute

This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed sin

  • PDF / 13,733,408 Bytes
  • 202 Pages / 595.276 x 841.89 pts (A4) Page_size
  • 37 Downloads / 169 Views

DOWNLOAD

REPORT


Asped~f

Mathematic~

Edited by Klos Diederich Vol. E 2:

M. Knebuseh/M. Koister: Wittrings

Vol. E 3:

G. Hector/U. Hirsch: Introduction to the Geometry of Foliations, Part B

Vol. E 5:

P. Stiller: Automorphie Forms and the Pieard Number of an Elliptie Surfaee

Vol. E 6:

G. Faltings/G. Wüstholz et 01.: Rational Poinls*

Vol. E 7:

W. StoII: Value Distribution Theory for Meromorphie Mops

Vol. E 9:

A. Howard/P.-M. Wong (Eds.): Contribution to Several Complex Variables

Vol. E 10: A. J Tromba (Ed.): Seminar of New Results in Nonlinear Partial Differential Equations* Vol. E 13:

Y. Andre: G-Funetions and Geometry*

Vol. E 14:

U. Cegrell: Capaeities in Complex Analysis

Vol. E 15: J-P. Serre: Lectures on the Mordell-Weil Theorem Vol. E 16:

K. Iwasaki/H. Kimura/S. Shimomura/M. Yoshida: From Gauss to Painleve

Vol. E 17:

K. Diederich (Ed.): Complex Analysis

Vol. E 18: W. W. J Hulsbergen: Conjeetures in Arithmetie Aigebraie Geometry Vol. E 19:

R. Racke: Leetures on Nonlinear Evolution Equations

Vol. E 20:

F. Hirzebrueh, Th. Berger, R. Jung: Manifolds and Modular Forms *

Vol. E 21:

H. Fujimoto: Value Distribution Theory of the Gauss Map of Minimal Surfaees in Rm

Vol. E 22:

D. V. Anosov/A. A. Bolibrueh: The Riemann-Hilbert Problem

Vol. E 23:

A. P. Fordy/J C. Wood (Eds.): Harmonie Mops and Integrable Systems

Vol. E 24:

D. S. Alexander: A History of Complex Dynamies

Vol. E 25:

A. Tikhomirov/A. Tyurin (Eds.): Algebraie Geometry and its Applieations

* A Publicatian of the Max-Planck-Institut für Mathematik, Bonn Volumes

of

the German-Ianguage subseries "Aspekte der Mathemotik" ore listed at the end of the book.

D. V. Anosov A. A. Bolibruch

'he Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev

IJ Vleweg

Professor D. V. Anosov Professor A. A. Bolibruch Steklov Institute of Mathematics Vavilova 42 117966 Moscow/CIS Russia

Die Deutschc Bibliothek - CIP-Einheitsaufnahme Anosov, D. v.: The Riemann Hilbert problem: a publication from the Steklov Institute of Mathematics / D. V. Anosov; A. A. Bolibruch. (Aspects of mathematics: E; VoI. 22) ISBN 978-3-322-92911-2 ISBN 978-3-322-92909-9 (eBook) DOI 10.1007/978-3-322-92909-9 NE: Bolibruch, A. A.:; Aspects of mathematics / E

Mathematics Subject Classification: 34A20

AII rights reserved © Springer Fachmedien Wiesbaden 1994 Originally published by Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, BraunschweiglWiesbaden in 1994

Vieweg is a subsidiary company of the Bertelsmann Publishing Group International.

No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanical, photocopying or otherwise without prior permission of the copyright holder.

Cover design: Wolfgang Nieger, Wiesbaden Printed on acid-free paper

ISSN 0179-2156 ISBN 978-3-322-92911-2

v

Preface This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the exi