The Riemann-Hilbert Problem A Publication from the Steklov Institute
This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the existence of a Fuchsian system with prescribed sin
- PDF / 13,733,408 Bytes
- 202 Pages / 595.276 x 841.89 pts (A4) Page_size
- 37 Downloads / 169 Views
Asped~f
Mathematic~
Edited by Klos Diederich Vol. E 2:
M. Knebuseh/M. Koister: Wittrings
Vol. E 3:
G. Hector/U. Hirsch: Introduction to the Geometry of Foliations, Part B
Vol. E 5:
P. Stiller: Automorphie Forms and the Pieard Number of an Elliptie Surfaee
Vol. E 6:
G. Faltings/G. Wüstholz et 01.: Rational Poinls*
Vol. E 7:
W. StoII: Value Distribution Theory for Meromorphie Mops
Vol. E 9:
A. Howard/P.-M. Wong (Eds.): Contribution to Several Complex Variables
Vol. E 10: A. J Tromba (Ed.): Seminar of New Results in Nonlinear Partial Differential Equations* Vol. E 13:
Y. Andre: G-Funetions and Geometry*
Vol. E 14:
U. Cegrell: Capaeities in Complex Analysis
Vol. E 15: J-P. Serre: Lectures on the Mordell-Weil Theorem Vol. E 16:
K. Iwasaki/H. Kimura/S. Shimomura/M. Yoshida: From Gauss to Painleve
Vol. E 17:
K. Diederich (Ed.): Complex Analysis
Vol. E 18: W. W. J Hulsbergen: Conjeetures in Arithmetie Aigebraie Geometry Vol. E 19:
R. Racke: Leetures on Nonlinear Evolution Equations
Vol. E 20:
F. Hirzebrueh, Th. Berger, R. Jung: Manifolds and Modular Forms *
Vol. E 21:
H. Fujimoto: Value Distribution Theory of the Gauss Map of Minimal Surfaees in Rm
Vol. E 22:
D. V. Anosov/A. A. Bolibrueh: The Riemann-Hilbert Problem
Vol. E 23:
A. P. Fordy/J C. Wood (Eds.): Harmonie Mops and Integrable Systems
Vol. E 24:
D. S. Alexander: A History of Complex Dynamies
Vol. E 25:
A. Tikhomirov/A. Tyurin (Eds.): Algebraie Geometry and its Applieations
* A Publicatian of the Max-Planck-Institut für Mathematik, Bonn Volumes
of
the German-Ianguage subseries "Aspekte der Mathemotik" ore listed at the end of the book.
D. V. Anosov A. A. Bolibruch
'he Riemann-Hilbert Problem A Publication from the Steklov Institute of Mathematics Adviser: Armen Sergeev
IJ Vleweg
Professor D. V. Anosov Professor A. A. Bolibruch Steklov Institute of Mathematics Vavilova 42 117966 Moscow/CIS Russia
Die Deutschc Bibliothek - CIP-Einheitsaufnahme Anosov, D. v.: The Riemann Hilbert problem: a publication from the Steklov Institute of Mathematics / D. V. Anosov; A. A. Bolibruch. (Aspects of mathematics: E; VoI. 22) ISBN 978-3-322-92911-2 ISBN 978-3-322-92909-9 (eBook) DOI 10.1007/978-3-322-92909-9 NE: Bolibruch, A. A.:; Aspects of mathematics / E
Mathematics Subject Classification: 34A20
AII rights reserved © Springer Fachmedien Wiesbaden 1994 Originally published by Friedr. Vieweg & Sohn Verlagsgesellschaft mbH, BraunschweiglWiesbaden in 1994
Vieweg is a subsidiary company of the Bertelsmann Publishing Group International.
No part of this publication may be reproduced, stored in a retrieval system or transmitted, mechanical, photocopying or otherwise without prior permission of the copyright holder.
Cover design: Wolfgang Nieger, Wiesbaden Printed on acid-free paper
ISSN 0179-2156 ISBN 978-3-322-92911-2
v
Preface This book is devoted to Hilbert's 21st problem (the Riemann-Hilbert problem) which belongs to the theory of linear systems of ordinary differential equations in the complex domain. The problem concems the exi
Data Loading...