Thermoelectric Power in Nanostructured Materials Strong Magnetic Fie

This is the first monograph which solely investigates the thermoelectric power in nanostructured materials under strong magnetic field (TPSM) in quantum confined nonlinear optical, III-V, II-VI, n-GaP, n-Ge, Te, Graphite, PtSb2, zerogap, II-V, Gallium Ant

  • PDF / 7,318,070 Bytes
  • 411 Pages / 453.533 x 683.788 pts Page_size
  • 12 Downloads / 210 Views

DOWNLOAD

REPORT


SPRINGER SERIES IN MATERIALS SCIENCE 137

Thermoelectric Power in Nanostructured Materials Strong Magnetic Fields

123

Springer Series in

materials science

137

Springer Series in

materials science Editors: R. Hull C. Jagadish R.M. Osgood, Jr. J. Parisi Z. Wang H. Warlimont The Springer Series in Materials Science covers the complete spectrum of materials physics, including fundamental principles, physical properties, materials theory and design. Recognizing the increasing importance of materials science in future device technologies, the book titles in this series ref lect the state-of-the-art in understanding and controlling the structure and properties of all important classes of materials.

Please view available titles in Springer Series in Materials Science on series homepage http://www.springer.com/series/856

Kamakhya Prasad Ghatak Sitangshu Bhattacharya

Thermoelectric Power in Nanostructured Materials Strong Magnetic Fields

With 174 Figures

123

Professor Dr. Kamakhya Prasad Ghatak

Dr. Sitangshu Bhattacharya

University of Calcutta Deptartment of Electronic Science Acharya Prafulla Chandra Rd. 92 Kolkata, 700 009, India E-mail: [email protected]

Indian Institute of Science Center of Electronics Design and Technology Nano Scale Device Research Laboratory Bangalore, 560 012, India E-mail: [email protected]

Series Editors:

Professor Robert Hull

Professor J¨urgen Parisi

University of Virginia Dept. of Materials Science and Engineering Thornton Hall Charlottesville, VA 22903-2442, USA

Universit¨at Oldenburg, Fachbereich Physik Abt. Energie- und Halbleiterforschung Carl-von-Ossietzky-Straße 9–11 26129 Oldenburg, Germany

Professor Chennupati Jagadish

Dr. Zhiming Wang

Australian National University Research School of Physics and Engineering J4-22, Carver Building Canberra ACT 0200, Australia

University of Arkansas Department of Physics 835 W. Dicknson St. Fayetteville, AR 72701, USA

Professor R. M. Osgood, Jr.

Professor Hans Warlimont

Microelectronics Science Laboratory Department of Electrical Engineering Columbia University Seeley W. Mudd Building New York, NY 10027, USA

DSL Dresden Material-Innovation GmbH Pirnaer Landstr. 176 01257 Dresden, Germany

Springer Series in Materials Science ISSN 0933-033X ISBN 978-3-642-10570-8 e-ISBN 978-3-642-10571-5 DOI 10.1007/978-3-642-10571-5 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010931384 © Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specif ically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microf ilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyri