Trajectory Spaces, Generalized Functions and Unbounded Operators
- PDF / 15,251,548 Bytes
- 277 Pages / 468 x 684 pts Page_size
- 42 Downloads / 315 Views
		    1162 S.J. L,. van Eijndhoven J. de
 
 Trajectory Spaces, Generalized Functions and Llnbounded Operators
 
 Springer-Verlag Berlin Heidelberq New York Tokyo
 
 Lecture Notes in Mathematics Edited by A. Oold and B. Eckmann
 
 1162 S.J. L,. van Eijndhoven J. de
 
 Trajectory Spaces, Generalized Functions and Llnbounded Operators
 
 Springer-Verlag Berlin Heidelberq New York Tokyo
 
 Authors S.J.L. van Eijndhoven
 
 J. de Graaf Eindhoven University of Technology Den Dolech 2, P.O. Box 513 5700 MB Eindhoven, The Netherlands
 
 Mathematics Subject Classification (1980): 46A 12, 46F05, 46F 10,47030,81 B05 ISBN 3·540·16065·5 Sprinqer-Verlaq Berlin Heidelberg New York Tokyo ISBN 0·387·16065·5 Springer-Verlag New York Heidelberg Berlin Tokyo
 
 Library of Congress Cataloqinq-m-Publication Data. Eijndhoven, Stephan us van, 1956- Trajectory Spaces, generalized functions, and unbounded operators. (Lecture notes in mathematics; 1162) Bibliography: p. Includes index. 1. Linear topological spaces. 2. Mappings (Mathematics) 3. Quantum theory. I. Graaf, Johannes de, 1942-. II. Title. III. Series: Lecture notes in mathematics (Springer-Verlag); 1162. 0A3.L28 no. 1162 [0A322] 510 s [515.7'3] 85-27810 ISBN 0-387-16065-5 (U.S.) This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.
 
 © by Sprinqer-Verlaq Berlin Heidelberg 1985 Printed in Germany Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2146/3140-543210
 
 CONTENTS
 
 Prologue I.
 
 Analyticity spaces, trajectory spaces and linear mappings between them Introduction
 
 10
 
 SX,A The trajectory space TX,A Pairing and duality of SX,A and TX,A
 
 11
 
 22
 
 1.4.
 
 Continuous linear mappings between analyticity spaces and trajectory spaces
 
 37
 
 II.
 
 Illustrative examples of analyticity spaces
 
 1.11.2. 1.3.
 
 The analyticity space
 
 31
 
 Introduction
 
 45
 
 11.1.
 
 Analyticity spaces based on the Laplacian operator
 
 47
 
 11.2.
 
 The GelfandShilov spaces
 
 11.3.
 
 Analyticity spaces related to classical polynomials
 
 60
 
 11.4.
 
 Analyticity spaces related to unitary representations of Lie groups
 
 71
 
 III.
 
 Compound spaces, tensor products and kernel theorems
 
 sSa
 
 Introduction
 
 55
 
 77
 
 111.1. Compound spaces
 
 78
 
 111.2. The analyticitytrajectory space STZ;C,O
 
 82
 
 111.3. The trajectoryanalyticity space TSZ;C,O
 
 98
 
 111.4. Pairing and duality of STZ;C,O and TSZ;C,D
 
 103
 
 111.5. An inclusion diagram for compound spaces
 
 108
 
 II1.6. Topological tensor products and kernel theorems
 
 116
 
 Appendix
 
 131
 
 IV IV.
 
 Algebras of continuous linear mappings on analyticity spaces and trajectory spaces Introduction
 
 133
 
 L(SX,A) IV.2. The algebra L(TX,A) IV.3. The algebra E(SX,A)
 
 135
 
 IV.1. The algebra
 
 IV.4. Operator ideals in
 
 149 162
 
 L(SX,A) and L(TX,A)
 
 17		
Data Loading...
 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	 
	