Twistor Theory for Riemannian Symmetric Spaces With Applications to

In this monograph on twistor theory and its applications to harmonic map theory, a central theme is the interplay between the complex homogeneous geometry of flag manifolds and the real homogeneous geometry of symmetric spaces. In particular, flag manifol

  • PDF / 11,351,568 Bytes
  • 120 Pages / 442.08 x 663.12 pts Page_size
  • 70 Downloads / 182 Views

DOWNLOAD

REPORT


1424 Francis E. Burstall John H. Rawnsley

Twistor Theory for Riemannian Symmetric Spaces With Applications to Harmonic Maps of Riemann Surfaces

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong

Authors Francis E. Burstall School of Mathematical Sciences University of Bath Bath BA2 7AY, Great Britain John H. Rawnsley Mathematics Institute University of Warwick Coventry CV4 7AL, Great Britain

Mathematics Subject Classification (1980): Primary: 58E20, 53C30, 53C35, 53C55 Secondary: 83C60 ISBN 3-540-52602-1 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-52602-1 Springer-Verlag New York Berlin Heidelberg

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation , reprinting, re-use of illustrations, recitation, broadcasting, reproduction on microfilms or in other ways, and storage in data banks. Duplication of this publication or parts thereof is only permitted under the provisions of the German Copyright Law of September 9, 1965, in its version of June 24, 1985, and a copyright fee must always be paid. Violations fall under the prosecution act of the German Copyright Law.

© Springer-Verlag Berlin Heidelberg 1990 Printing and binding : Druckhaus Beltz, Hemsbach/Bergstr. 2146/3140·543210 - Printed on acid-free paper

Table of Contents

Introduction ............................................................................................................................................................. 1 Chapter 1. Homogeneous Geometry ................................. ............... .............................................................. 6 Chapter 2. Harmonic Maps and Twistor Spaces ....................................................................................... 15 Chapter 3. Symmetric Spaces ........................................................................................................................... 22 Chapter 4. Flag Manifolds ................................................................................................................................. 39 Chapter 5. The Twistor Space of a Riemannian Symmetric Space .................................................... 63 Chapter 6. Twistor Lifts over Riemannian Symmetric Spaces ....................................... ...................... 71 Chapter 7. Stable Harmonic 2-spheres .......................................................................................................... 81 Chapter 8. Factorisation of Harmonic Spheres in Lie Groups ............................................................. 90 References ............................................................................................................................................................... 106 Index ................................................ .......................................................................................................................... III

Introduction Background The subject of this mo