Type2 diabetes mellitus prediction using data mining algorithms based on the long-noncoding RNAs expression: a compariso

  • PDF / 1,216,696 Bytes
  • 13 Pages / 595.276 x 793.701 pts Page_size
  • 41 Downloads / 149 Views

DOWNLOAD

REPORT


RESEARCH ARTICLE

Open Access

Type2 diabetes mellitus prediction using data mining algorithms based on the longnoncoding RNAs expression: a comparison of four data mining approaches Faranak Kazerouni1, Azadeh Bayani2, Farkhondeh Asadi2*, Leyla Saeidi3, Nasrin Parvizi4 and Zahra Mansoori1 * Correspondence: Asadifar@sbmu. ac.ir 2 Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran Full list of author information is available at the end of the article

Abstract Background: About 90% of patients who have diabetes suffer from Type 2 DM (T2DM). Many studies suggest using the significant role of lncRNAs to improve the diagnosis of T2DM. Machine learning and Data Mining techniques are tools that can improve the analysis and interpretation or extraction of knowledge from the data. These techniques may enhance the prognosis and diagnosis associated with reducing diseases such as T2DM. We applied four classification models, including Knearest neighbor (KNN), support vector machine (SVM), logistic regression, and artificial neural networks (ANN) for diagnosing T2DM, and we compared the diagnostic power of these algorithms with each other. We performed the algorithms on six LncRNA variables (LINC00523, LINC00995, HCG27_201, TPT1-AS1, LY86-AS1, DKFZP) and demographic data. Results: To select the best performance, we considered the AUC, sensitivity, specificity, plotted the ROC curve, and showed the average curve and range. The mean AUC for the KNN algorithm was 91% with 0.09 standard deviation (SD); the mean sensitivity and specificity were 96 and 85%, respectively. After applying the SVM algorithm, the mean AUC obtained 95% after stratified 10-fold cross-validation, and the SD obtained 0.05. The mean sensitivity and specificity were 95 and 86%, respectively. The mean AUC for ANN and the SD were 93% and 0.03, also the mean sensitivity and specificity were 78 and 85%. At last, for the logistic regression algorithm, our results showed 95% of mean AUC, and the SD of 0.05, the mean sensitivity and specificity were 92 and 85%, respectively. According to the ROCs, the Logistic Regression and SVM had a better area under the curve compared to the others. (Continued on next page)

© The Author(s). 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from