US DOE clean energy initiative designed to accelerate materials to market
- PDF / 242,181 Bytes
- 2 Pages / 585 x 783 pts Page_size
- 21 Downloads / 174 Views
US DOE clean energy initiative designed to accelerate materials to market http://energy.gov/eere/energy-materials-network
A
dvanced materials solutions have the potential to revolutionize the energy landscape and tip the scales further toward clean energy technologies. One of the most significant hurdles in the advancement of clean energy lies in bringing innovative new products to market, a process that often takes longer than a decade. The traditionally slow pace to discover, develop, test, and commercialize advanced materials solutions for clean energy will leave the United States falling short of its ambitious goals for carbon reduction and runs counter to efforts to reverse the decline of US manufacturing. In an attempt to accelerate the materials development cycle, the US Department of Energy (DOE) launched the Energy Materials Network (EMN) in February 2016. The Energy Materials Network is part of a broader effort by the Obama administration to develop a clean energy
economy and to reestablish a vibrant manufacturing sector in the United States through advanced manufacturing. Both the Materials Genome Initiative (to discover and deploy advanced materials twice as fast at a fraction of the cost) and the recommendations of the Advanced Manufacturing Partnership 2.0 (which highlights the importance of materials development for US-based advanced manufacturing) are supported by this new network program. A national laboratory-led initiative, the EMN partners the laboratories with industry to tackle some of the most pressing materials-related challenges for clean energy manufacturing. Four initial critical areas of materials development have been identified, and $40 million in funding for fiscal year 2016 has been provided by the DOE’s Office of Energy Efficiency and Renewable Energy (EERE) to establish the first four consortia.
The Lightweight Materials Consortium (LightMAT) is led by Pacific Northwest National Laboratory (PNNL) and focuses on the development and application of lightweight materials to increase fuel efficiency for vehicles. Jointly led by Argonne National Laboratory and Los Alamos National Laboratory (LANL), the Electrocatalysis Consortium (ElectroCat) seeks to replace the rare and expensive platinum group metals in fuel cells with next-generation electrocatalysts. The Caloric Cooling Consortium (CaloriCool) is led by Ames Laboratory and is working to discover new caloric materials (materials that cool when subjected to magnetic, electric, or mechanical forces) and to develop more energy-efficient cooling technologies. A fourth consortium to develop cheaper and more durable materials for solar modules will be established later this year. An additional $120 million has also been requested for fiscal year 2017 to further support the original four consortia and to add an additional three that will focus on catalysts for biofuels and bioproducts, materials for renewable hydrogen production, and materials for lowpressure hydrogen storage. The consortia-based structure of the EMN establishes focus a
Data Loading...