US National Academies report on the Frontiers of Materials Research

  • PDF / 45,338,902 Bytes
  • 6 Pages / 585 x 783 pts Page_size
  • 81 Downloads / 191 Views

DOWNLOAD

REPORT


US National Academies report on the Frontiers of Materials Research

M

aterials research is vital across many important societal sectors— from health and wellness, to energy and sustainability, to national security. It is also constantly evolving, with advancements in technology, integration of computational methods, and the development of new means of materials synthesis, processing, and characterization. “Because of the depth and breadth of materials science [and engineering], it is important to periodically look at the applications across the landscape of different disciplines and technologies—to highlight the work that’s been done as well as the directions for new discovery—and to make this information available to both scientists and policymakers,” says Damon Dozier, director of government affairs for the Materials Research Society. This is a task that was recently taken on by the US National Academies of Sciences, Engineering, and Medicine (Academies) at the behest of the National Science Foundation (NSF) and the Department of Energy (DOE). The resulting study, entitled Frontiers of Materials Research:

A Decadal Survey (doi:10.17226/25244), reviews developments in materials science over the last decade, examines a range of future opportunities in materials research, and makes recommendations to update government policy to better support this research into the coming decade. Released in February 2019, the consensus report is the fourth in a series of studies on materials research by the Academies over the last four decades. The previous studies have been used to help inform and drive materials-related research and policy initiatives: Materials Science and Engineering for the 1990s: Maintaining Competitiveness in the Age of Materials (doi:10.17226/758), Materials Research to Meet 21st-Century Defense Needs (doi:10.17226/10631), and Condensed-Matter and Materials Physics: The Science of the World Around Us (doi:10.17226/11967). The report is comprehensive, and Alan Hurd, executive advisor at Los Alamos National Laboratory and a member of the Academies Board on Physics and Astronomy, says it is “refreshingly organized by materials type, which took some courage given the remit to review a decade of advances.” Containing a summary and five chapters, the report explores developments, progress, and achievements across materials science over the last decade (chapters 1–2); opportunities in materials research for the next decade (chapter 3); tools, methods, infrastructure, and facilities that enable research in materials (chapter 4); and an assessment on national competitiveness that includes case studies of a range of materials-enabled technologies (chapter 5). The findings and recommendations of the report, detailed in Table I, will be used to “inform science policymakers on appropriations, chief technology officers on investments, and department heads on new hires,” Hurd says.

The summary of the report elucidates many of the important points: A remarkable number of paradigmchanging advances have been made in mat