Use of Archaeological Glass to Predict the Long-Term Behavior of HLW
- PDF / 984,324 Bytes
- 9 Pages / 595.22 x 842 pts (A4) Page_size
- 70 Downloads / 143 Views
Use of Archaeological Glass to Predict the Long-Term Behavior of HLW S. Gin1, A. Verney-Carron2, G. Libourel2 1 CEA, DEN, Marcoule, BP 1717 30207 Bagnols-sur-Cèze Cedex France 2 CRNS, CRPG 15, rue Notre Dame des Pauvres 54501 Vandoeuvre-lès-Nancy France ABSTRACT The predictability of models describing long-term nuclear glass behavior in a geological repository can be tested by means of natural or archaeological analogs. This study covers fractured archaeological glass blocks from a shipwreck discovered near the Mediterranean island of Embiez (France). The blocks were examined mainly because of their morphological analogy with nuclear glasses. Fractured after production (as in the case of nuclear glass), these blocks had been leached for 1800 years in seawater. The laboratory investigation led to the development and subsequent validation on archaeological objects of a geochemical model capable of accurately simulating the coupling between chemistry and transport to account for the alteration state of the cracks according to their geometric characteristics. Laboratory experiments allowed us to determine the kinetic and thermodynamic parameters for modeling glass alteration. The model was then tested against short-term experiments before simulating the crack alteration over 1800 years. We show that cracks in the outer regions of the block are the most severely altered because of rapid solution renewal, whereas internal cracks are very slightly altered because of a rate-limiting effect of water transport due to the formation of secondary phases. This study also establishes a direct link between data obtained at lab scale and the long-term evolution of a complex system in a natural environment, indicating that the key phenomena have been identified experimentally. The analogous behavior of archaeological and nuclear glass during leaching experiments and the similarities in their crack networks allow us to consider applying the model to nuclear glasses under geological repository conditions. This study clearly shows that the internal crack network does not play a major role in the overall long-term alteration of archeological glass blocks. The issue of the transposition studies will be to determine whether this conclusion can be generalized to nuclear glasses. INTRODUCTION Predictions of nuclear glass behavior under geological repository conditions are based on mechanistic models configured from experimental studies. The predictive capacity of models, especially over the long term, is tested by examination of natural or archaeological analogs. Vitreous materials with compositions differing from those of nuclear glasses and leached in environments other than nuclear waste repositories can be used for this purpose, but only if they meet two essential requirements: (1) analogous behavior must be established for the two types of glass (natural or archaeological and nuclear), in particular by demonstrating that the fundamental alteration mechanisms are of the same nature; and (2) the geochemical environment in which the analog
Data Loading...