Walsh Equiconvergence of Complex Interpolating Polynomials

  • PDF / 4,335,988 Bytes
  • 303 Pages / 439.37 x 666.142 pts Page_size
  • 61 Downloads / 231 Views

DOWNLOAD

REPORT


Amnon Jakimovski, Ambikeshwar Sharma and József Szabados

Walsh Equiconvergence of Complex Interpolating Polynomials

ABC

Amnon Jakimovski Tel-Aviv University Tel-Aviv, Israel

Ambikeshwar Sharma The University of Alberta Edmonton, Canada

József Szabados Hungarian Academy of Sciences Budapest, Hungary

A C.I.P. Catalogue record for this book is available from the Library of Congress.

ISBN 978-1-4020-4174- 7 (HB) ISBN 978-1-4020-4175- 4 (e-Book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands. www.springer.com

Printed on acid-free paper

All Rights Reserved c 2006 Springer  No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

DEDICATION

And one might therefore say of me that in this book, I have only made up a bunch of other people’s flowers and that of my own I have only provided the string that ties them together.

(Book III, Chapter XVI of Physiognomy) Signeur de Montaigne

v

CONTENTS

xi

Preface 1. LAGRANGE INTERPOLATION AND WALSH EQUICONVERGENCE 1.1 Introduction 1.2 Least-Square Minimization 1.3 Functions Analytic in Γρ = {z : |z| = ρ} 1.4 An Extension of Walsh’s Theorem 1.5 Multivariate Extensions of Walsh’s Theorem 1.6 Historical Remarks

1 1 5 7 11 14 21

2. HERMITE AND HERMITE-BIRKHOFF INTERPOLATION AND WALSH EQUICONVERGENCE 2.1 Hermite Interpolation 2.2 Generalization of Theorem 1 2.3 Mixed Hermite Interpolation 2.4 Mixed Hermite and 2 -Approximation 2.5 A Lemma and its Applications 2.6 Birkhoff Interpolation 2.7 Historical Remarks

25 25 30 33 38 41 47 53

3. A GENERALIZATION OF THE TAYLOR SERIES TO RATIONAL FUNCTIONS AND WALSH EQUICONVERGENCE 3.1 Rational Functions with a Minimizing Property 3.2 Interpolation on roots of z n − σ n α (z) and rn+m, n,(z) for m ≥ − 1 3.3 Equiconvergence of Rn+m,n 3.4 Hermite Interpolation 3.5 A Discrete Analogue of Theorem 1 vii

55 55 58 61 69 72

v iii

WALSH EQUICONVERGENCE OF COMPLEX INTERPOLATING . . .

3.6 Historical Remarks

80

4. SHARPNESS RESULTS 4.1 Lagrange Interpolation 4.2 Hermite Interpolation 4.3 The Distinguished Role of the Roots of Unity for the Circle 4.4 Equiconvergence of Hermite Interpolation on Concentric Circles 4.5 (0, m)-P´al type Interpolation 4.6 Historical Remarks

81 81 95 97 103 108 111

5. CONVERSE RESULTS 5.1 Lagrange Interpolation 5.2 Hermite Interpolation 5.3 Historical Remarks

115 115 124 128

´ APPROXIMATION AND WALSH EQUICONVERGENCE 6. PADE FOR MEROMORPHIC FUNCTIONS WITH ν−POLES 6.1 Introduction 6.2 A Generalization of Theorem 1 6.3 Historical Remarks

129 129 132 142

7. QUANTITATIVE RESULTS IN THE EQUICONVERGENCE OF APPROXIMATION OF MEROMORPHIC FUNCTIONS 7.1 The main Theorems 7.2 Some Lemmas 7.3 Distinguished Points for |z| < ρ (proof of Theorems