2017 MRS Spring Meeting features issues and developments across disciplines

  • PDF / 332,253,880 Bytes
  • 4 Pages / 585 x 783 pts Page_size
  • 110 Downloads / 227 Views

DOWNLOAD

REPORT


2017 MRS Spring Meeting features issues and developments across disciplines www.mrs.org/spring2017

T

he Materials Research Society (MRS) held its Spring Meeting in Phoenix, Ariz., on April 17–21, and featured several opportunities for professional development, extending research, practicing scientific writing, and networking. The Meeting Chairs, Christopher J. Bettinger (Carnegie Mellon University), Stefan A. Maier (Imperial College London), Alfonso H.W. Ngan (The University of Hong Kong), W. Jud Ready (Georgia Institute of Technology), and Eli A. Sutter (University of Nebraska–Lincoln) put together 53 symposia that comprised the technical core of the Meeting. They were grouped into five topical clusters: Characterization, Theory, and Modeling; Electronic Devices and Materials; Energy Storage and Conversion; Nanomaterials; and Soft Materials and Biomaterials. Symposium presentations

Lithium-ion batteries (LIBs) represent one of the most successful cell chemistries. Mark Verbrugge, General Motors R&D Center, discussed the “Needs and Challenges Associated with High Energy Batteries with an Emphasis on Thermodynamic Underpinnings” in his symposium presentation. The spread of

LIBs in the commercial market is due, in part, to lucrative energy/power-to-size scaling, close to 100% reversibility, and a reasonable cycle life. Storage of electrochemical energy in electrode materials takes place via intercalation, which in itself is considerably different and far more complex than traditional solutionphase electrochemistry. This makes the fundamental understanding of LIB materials challenging as well as interesting. Verbrugge has been working on a “thermodynamically consistent” description of intercalation in electrodes that ties together experimental material behavior with a minimal set of functional relations. Takeshi Morikawa, Toyota Central R&D Labs, presented a talk on “Solar CO2 Reduction Coupled with Water Oxidation” that focused on CO2 as one of the key contributors to the greenhouse effect, hence a growing effort to convert CO2 into fuel. After earlier success in CO2 reduction using a semiconductor electrode (nitrogen-doped tantalum oxide) along with a metal complex electrocatalyst, Morikawa and his team at Toyota have been progressively improving their system to realize objectives for an industrial scale production, such as the use of

cheaper materials. The research team has developed a new system that couples a titanium oxide-based photoanode for water reduction and a cathode to reduce CO2 without explicit use of an electron donor for reduction at the cathode. With a silicon-germanium junction as a light absorber, they reported solar conversion efficiency as high as 4.6%. Lab-on-chip devices are a revolutionary concept that operate at the interface of biology and fluid mechanics. Anna Balazs, in her talk “Surface-Bound Enzymatic Reactions Organize Microcapsules and Protocells in Solution,” discussed how the principles of microfluidics can be leveraged to transport desired molecules to particular locations. Thu