A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gong
- PDF / 2,731,612 Bytes
- 12 Pages / 595.276 x 785.197 pts Page_size
- 41 Downloads / 166 Views
RESEARCH ARTICLE
Xuelin ZHANG, Tong ZHANG, Xiaodai XUE, Yang SI, Xuemin ZHANG, Shengwei MEI
A comparative thermodynamic analysis of Kalina and organic Rankine cycles for hot dry rock: a prospect study in the Gonghe Basin
© Higher Education Press 2020
Abstract Hot dry rock is a new type of geothermal resource which has a promising application prospect in China. This paper conducted a comparative research on performance evaluation of two eligible bottoming cycles for a hot dry rock power plant in the Gonghe Basin. Based on the given heat production conditions, a Kalina cycle and three organic Rankine cycles were tested respectively with different ammonia-water mixtures of seven ammonia mass fractions and nine eco-friendly working fluids. The results show that the optimal ammonia mass fraction is 82% for the proposed bottoming Kalina cycle in view of maximum net power output. Thermodynamic analysis suggests that wet fluids should be supercritical while dry fluids should be saturated at the inlet of turbine, respectively. The maximum net power output of the organic Rankine cycle with dry fluids expanding from saturated state is higher than that of the other organic Rankine cycle combinations, Received Feb. 13, 2020; accepted May 7, 2020; online Oct. 20, 2020 Xuelin ZHANG State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China Tong ZHANG State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; Jingjing Energy Storage Co., Ltd., Changzhou 213200, China
✉
Xiaodai XUE ( ) State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; School of QiDi (TUS) Renewable Energy, Qinghai University, Xining 810016, China; Jingjing Energy Storage Co., Ltd., Changzhou 213200, China E-mail: [email protected] Yang SI, Xuemin ZHANG, Shengwei MEI State Key Laboratory of Control and Simulation of Power System and Generation Equipments, Department of Electrical Engineering, Tsinghua University, Beijing 100084, China; School of QiDi (TUS) Renewable Energy, Qinghai University, Xining 810016, China
and is far higher than the maximum net power output in all tested Kalina cycle cases. Under the given heat production conditions of hot dry rock resource in the Gonghe Basin, the saturated organic Rankine cycle with the dry fluid butane as working fluid generates the largest amount of net power. Keywords hot dry rock, Kalina cycle, organic Rankine cycle, thermodynamic analysis
1
Introduction
Environmental pollution and energy crisis have become global concerned issues. The application of clean alternative energy sources offers an effective solution to these problems. Hot dry rock (HDR) is a type of hightemperature and moist-free rock mass that is buried deep underground [1]. Therefore, it is categorized
Data Loading...