Advanced magnetic materials could drive next-generation energy technologies

  • PDF / 497,539 Bytes
  • 2 Pages / 585 x 783 pts Page_size
  • 49 Downloads / 216 Views

DOWNLOAD

REPORT




Energy Sector Analysis

Researchers around the world are developing promising high-performance magnetic materials for future energy technologies. Yet, the need for novel, low-cost magnetic compounds is huge, and there are many hurdles to cross.

Advanced magnetic materials could drive next-generation energy technologies By Prachi Patel Feature Editor: Oliver Gutfleisch

T

he Intergovernmental Panel on Climate Change report, released in October of this year, warned of the short time left to prevent the worst effects of a warming planet. Making a serious dent in greenhouse gas emissions will require more efficient ways to create and use energy, a transition from fossil fuels to renewables, and greener modes of transport. Magnetic materials will play a key role in these endeavors. Magnets are at the heart of electric generators in steam turbines and wind turbines, converting mechanical energy into electricity. In the electric motors that drive hybrid and plug-in electric cars, they do the reverse, converting electrical energy to motion. Stronger, lighter magnets would enable efficient turbines and car engines, and powerful, lightweight motors for cars, ships, and industrial robots. In developed nations, nearly 65% of total electrical energy use goes to drive electrical motors. Improving motor efficiency by just 1% would save almost 2.2 million metric tons of carbon equivalent emissions. A growing “green” economy will require better permanent magnetic materials. Wind power and electric car markets are expected to boom in coming years. Magnets weighing hundreds of kilograms are found in today’s direct-drive wind turbine generators, while each electric vehicle (EV) needs 1–2 kg of magnets. “There are several driving forces that will increase the demand for bulky magnets,” said Matthias Katter of magnet producer VACUUMSCHMELZE GmbH & Co. KG in Germany. Magnetic materials could also be the answer for next-generation cooling technologies. Air conditioners and refrigerators today rely on 150-year-old vapor compression technology that is energy-intensive. Globally, about 17% of all electric energy spent and 8% of all emitted greenhouse gases are connected with cooling. New methods based on magnetocaloric materials that heat up in a magnetic field promise to be 30% more energy efficient. It would be a sustainable way to meet rising demands for cooling in India and China, which already now use 15 and 68 times more electricity, respectively, for cooling than in 1990. Researchers around the world are developing promising highperformance magnetic materials for future energy technologies. Yet, the need for novel, low-cost magnetic compounds is huge, and there are many hurdles to cross. The crucial challenge is to develop compounds that contain less rare-earth metals. Neodymium-iron-boron (NdFeB) magnets, which garner about 70–80% of the permanent magnet market by value, contain about 30% by weight of rare earths, largely neodymium

with some dysprosium, which make up half the cost of the magnets. Well-known magnetocaloric mater