An Intermediate Course in Probability

The purpose of this book is to provide the reader with a solid background and understanding of the basic results and methods in probability theory before entering into more advanced courses. The first six chapters focus on some central areas of what might

  • PDF / 2,769,470 Bytes
  • 310 Pages / 439.37 x 666.142 pts Page_size
  • 82 Downloads / 476 Views

DOWNLOAD

REPORT


For other titles published in this series, go to www.springer.com/series/417

Allan Gut

An Intermediate Course in Probability Second Edition

Allan Gut Department of Mathematics Uppsala University SE-751 06 Uppsala Sweden [email protected] Series Editors: George Casella Department of Statistics University of Florida Gainesville, FL 32611-8545 USA

Stephen Fienberg Department of Statistics Carnegie Mellon University Pittsburgh, PA 15213-3890 USA

Ingram Olkin Department of Statistics Stanford University Stanford, CA 94305 USA

ISSN 1431-875X ISBN 978-1-4419-0161-3 e-ISBN 978-1-4419-0162-0 DOI 10.1007/978-1-4419-0162-0 Springer Dordrecht Heidelberg London New York Library of Congress Control Number: 2009927493 © Springer Science+Business Media, LLC 2009 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface to the First Edition

The purpose of this book is to provide the reader with a solid background and understanding of the basic results and methods in probability theory before entering into more advanced courses (in probability and/or statistics). The presentation is fairly thorough and detailed with many solved examples. Several examples are solved with different methods in order to illustrate their different levels of sophistication, their pros, and their cons. The motivation for this style of exposition is that experience has proved that the hard part in courses of this kind usually is the application of the results and methods; to know how, when, and where to apply what; and then, technically, to solve a given problem once one knows how to proceed. Exercises are spread out along the way, and every chapter ends with a large selection of problems. Chapters 1 through 6 focus on some central areas of what might be called pure probability theory: multivariate random variables, conditioning, transforms, order variables, the multivariate normal distribution, and convergence. A final chapter is devoted to the Poisson process because of its fundamental role in the theory of stochastic processes, but also because it provides an excellent application of the results and methods acquired earlier in the book. As an extra bonus, several facts about this process, which are frequently more or less taken for granted, are thereby properly verified. The bo