Elliptic Equations: An Introductory Course
The aim of this book is to introduce the reader to different topics of the theory of elliptic partial differential equations by avoiding technicalities and refinements. Apart from the basic theory of equations in divergence form it includes subjects such
- PDF / 1,969,734 Bytes
- 289 Pages / 467.717 x 666.142 pts Page_size
- 89 Downloads / 260 Views
chel Chipot
Elliptic Equations: An Introductory Course
Birkhäuser Basel · Boston · Berlin
$XWKRU Michel Chipot Institute of Mathematics University of Zürich :LQWHUWKXUHUVWU =ULFK Switzerland HPDLOPPFKLSRW#PDWKX]KFK
0DWKHPDWLFV6XEMHFW&ODVVL½FDWLRQ-[[----
/LEUDU\RI&RQJUHVV&RQWURO1XPEHU
Bibliographic information published by Die Deutsche Bibliothek 'LH'HXWVFKH%LEOLRWKHNOLVWVWKLVSXEOLFDWLRQLQWKH'HXWVFKH1DWLRQDOELEOLRJUD½H GHWDLOHGELEOLRJUDSKLFGDWDLVDYDLODEOHLQWKH,QWHUQHWDWKWWSGQEGGEGH!
,6%1%LUNKlXVHU9HUODJ$*%DVHOÀ%RVWRQÀ%HUOLQ This work is subject to copyright. All rights are reserved, whether the whole or part of WKHPDWHULDOLVFRQFHUQHGVSHFL½FDOO\WKHULJKWVRIWUDQVODWLRQUHSULQWLQJUHXVHRI LOOXVWUDWLRQVUHFLWDWLRQEURDGFDVWLQJUHSURGXFWLRQRQPLFUR½OPVRULQRWKHUZD\VDQG storage in data banks. For any kind of use permission of the copyright owner must be obtained. %LUNKlXVHU9HUODJ$* Basel · Boston · Berlin 32%R[&+%DVHO6ZLW]HUODQG Part of Springer Science+Business Media 3ULQWHGRQDFLGIUHHSDSHUSURGXFHGRIFKORULQHIUHHSXOS7&) Printed in Germany ,6%1
H,6%1
ZZZELUNKDXVHUFK
Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ix
Part I Basic Techniques 1 Hilbert Space Techniques 1.1 The projection on a closed convex set . 1.2 The Riesz representation theorem . . . 1.3 The Lax–Milgram theorem . . . . . . . 1.4 Convergence techniques . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
. . . . .
3 6 8 10 11
2 A Survey of Essential Analysis 2.1 Lp -techniques . . . . . . . . 2.2 Introduction to distributions 2.3 Sobolev Spaces . . . . . . . Exercises . . . . . . . . . . . . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
13 18 22 32
3 Weak Formulation of Elliptic Problems 3.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.2 The weak formulation . . . . . . . . . . . . . . . . . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
35 38 41
4 Elliptic Problems in Divergence Form 4.1 Weak formulation . . . . . . . . 4.2 The weak maximum principle . 4.3 Inhomogeneous problems . . . . Exercises . . . . . . . . . . . . . . . .
. . . .
43 49 53 54
5 Singular Perturbation Problems 5.1 A prototype of a singular perturbation problem . . . . . . . . . . 5.2 Anisotropic singular perturbation problems . . . . . . . . . . . . Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
57 61 69
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
. . . .
Data Loading...