Anaerobic Degradation of Aromatic Hydrocarbons
Many anaerobic prokaryotes are capable of mineralizing petroleum-derived hydrocarbons, including alkanes and aromatic compounds. The rate of microbial growth, cell yield, and the amount of energy released as a result of metabolism depends on the catabolic
- PDF / 140,274 Bytes
- 10 Pages / 439.37 x 666.142 pts Page_size
- 90 Downloads / 219 Views
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 Anaerobic Mechanisms: Fumarate Addition Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926 Anaerobic Mechanisms: Carboxylation Reactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 926
2 2.1 2.2 2.3 2.4 2.4.1 2.4.2 2.4.3
Polycylic Aromatic Hydrocarbons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 Anaerobic PAH Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 927 Pure Cultures of Anaerobic PAH Degraders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 Anaerobic PAH Degradation Pathways . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 Naphthalene Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 928 2-Methylnaphthalene Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929 Phenanthrene Degradation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 929
3
Research Needs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 930
4
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 931
K. N. Timmis (ed.), Handbook of Hydrocarbon and Lipid Microbiology, DOI 10.1007/978-3-540-77587-4_65, # Springer-Verlag Berlin Heidelberg, 2010
926
9
Anaerobic Degradation of Aromatic Hydrocarbons
Abstract: Many anaerobic prokaryotes are capable of mineralizing petroleum-derived hydrocarbons, including alkanes and aromatic compounds. The rate of microbial growth, cell yield, and the amount of energy released as a result of metabolism depends on the catabolic pathway and terminal electron acceptor utilized. Nitrate-reducing, denitrifying, iron-reducing, sulfatereducing, methanogenic, and anoxygenic phototrophic organisms have been linked to aromatic degradation. Of these potential electron acceptors, NO3 is the most energetic for microbes, followed by Fe3+, SO4 , and CO2.
1
Introduction
1.1
Anaerobic Mechanisms: Fumarate Addition Reactions
Radical enzymes play an important role in the degradation of aromatic and alkyl hydrocarbons; they aid in reducing the stability of the aromatic nucleus (Gibson and Harwood, 2002). Initially, insights into anaerobic degradation of toluene were reported in Evans et al. (1992). Evans isolated an anaerobic, denitrifying bacterium, designated T1, and found evid
Data Loading...