Baseline sensitivity and resistance risk assessment of Valsa mali to pyraclostrobin
- PDF / 956,943 Bytes
- 8 Pages / 595.276 x 790.866 pts Page_size
- 54 Downloads / 193 Views
Feng et al. Phytopathology Research (2020) 2:31 https://doi.org/10.1186/s42483-020-00072-9
RESEARCH
Open Access
Baseline sensitivity and resistance risk assessment of Valsa mali to pyraclostrobin Hao Feng†, Shuai Wang†, Zhaoyang Liu, Jianqiang Miao, Mingxia Zhou and Lili Huang*
Abstract Pyraclostrobin, a quinone outside inhibitor (QoI) fungicide, has been registered to control apple tree Valsa canker (AVC) caused by Valsa mali in China. However, there is no data available regarding the resistance risk of V. mali to pyraclostrobin. In this study, the sensitivities of 120 V. mali isolates to pyraclostrobin were detected. The isolates were collected from apple orchards with no application of pyraclostrob at six provinces in China during 2013–2015, and showed similar sensitivity to pyraclostrobin. The EC50 values of these 120 V. mali isolates to pyraclostrobin ranged from 0.0014 to 0.0240 μg/mL, indicating an excellent inhibitory efficacy of pyraclostrobin to the pathogen. The EC50 values were distributed as a unimodal curve with a mean value of 0.0091 μg/mL, and the mean EC50 displayed correlation with geographic location. Meanwhile, three pyraclostrobin-resistant mutants (PR mutants) of V. mali were obtained using fungicide adaption method, with a resistance factor (RF) of 41.0, 56.8 and 22.0, respectively. The mutants showed a stable resistance to pyraclostrobin after 10 transfers on pyraclostrobin-free medium. Comparing with the corresponding parental isolates, the hyphal growth, mycelial dry weight and pathogenicity of PR mutants were significantly reduced, but the number of propagules showed no significant difference. More importantly, no cross-resistance of PR mutants to pyraclostrobin, tebuconazole, difenoconazole, imazalil and thiophanate-methyl was detected. In conclusion, V. mali showed a moderate risk to pyraclostrobin, and pyraclostrobin could be used as an alternative fungicide to control AVC in the field in China. Keywords: Valsa Mali, Pyraclostrobin, Baseline sensitivity, Resistant risk
Background The apple tree Valsa canker (AVC), caused by Valsa mali, is the most serious disease of apple tree in Asia, especially in China (Abe et al. 2007; Suzaki 2008; Wang et al. 2011, 2014; Li et al. 2013). Shaving diseased bark tissues and spraying fungicide on the wound were commonly used to control AVC. However, it is very difficult to cure the canker, because the pathogen could penetrate deep into the xylem (Ke et al. 2013). Meanwhile, this method also leads to the weakening of trees, making the tree more susceptible to the disease. Thus, how to inhibit the penetration of pathogen spores is the key for disease prevention. In 2013, annual dissemination of the pathogen in the field was studied systematically, and the * Correspondence: [email protected] † Hao Feng and Shuai Wang contributed equally to this work. State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
peak period of pathogen dissemination was fou
Data Loading...