Basic Equations of Gasdynamics
The evolution of elementary fluid particles (in the ‘continuum’ sense) is characterized by exchanges of energy, momentum and mass with their environment. When they have comparatively large total energy density a number of “internal rate processes” can als
- PDF / 24,843,538 Bytes
- 408 Pages / 481.89 x 691.654 pts Page_size
- 11 Downloads / 213 Views
LUIGI G. NAPOLITANO INSTITUTE OF AERODYNAMICS UNIVERSITY OF NAPOLI, ITALY AND
OLEG M. BELOTSERKOVSKII COMPUTING CENTER ACADEMY OF SCIENCES MOSCOW, USSR
COMPUTATIONAL GASDYNAMICS
SPRINGER-VERLAG WIEN GMBH
This work is BUbject to copyript. All rights are reserved,
whether the whole or part of the material is concerned specifically those of tnmslation, reprinting, re-use of illustrations,
broadcasting, reproduction by photocopying machine or similar means, and storage in data banks.
©
1975 by Springer-Verlag Wien
Originally published by Springer-Verlag Wien-New York in 1975
ISBN 978-3-211-81428-4 DOI 10.1007/978-3-7091-2732-2
ISBN 978-3-7091-2732-2 (eBook)
CONTENTS page BASIC EQUATIONS OF GASDYNAMICS by L.G. Napolitano •.••••• Introduction • • . . • • . • • • • 1. Thermodynamic Description 2. Equilibrium Co.nditions . • • 3. Thermodynamic Stability . . 4. Consequences of the Stability 5. Thermodynamic Potentials • 6. Thermodynamic Models •.. 7. Balance Equations . . . . . . • . • • • • . • • . . . • • . . • • 8. Balance Equations for Thermodynamic State Variables • • . . • • . 9. Momentum Equations . . . . . . • • . • • • . . • . . • • • • . 10. Energy Conservation Equation. Balance Equations for Internal, Kinetic and Potential Energies. Heat Fluxes 11. Entropy Production . . . • . • • • • . • . • • • • . . • 12. Linear Irreversible Thermodynamics . . . • • . . • . • 13. Scalar Fluxes. Chemical Kinetics of the Rate Processes 14. Vectorial Fluxes . . . . . . • . • . . . . • • . • . • 15. Particular Case. Simple Gas . . . . . • . . . • . . • . . 16. Summary of the Closed Set of Basic Field Equations and Other Relevant Equations • 17. Analysis of Discontinuities . . . . • • . • • . • • • 18. Boundary Conditions . . . • • • . . • • . • • • . . 19. Properties of Flow Fields at a Large Reynolds Number References • . • • • . • . . • . . . . . . . . • . • • .
METHODS OF COMPUTATIONAL GASDYNAMICS by O.M. Belotserkovskii • • • . . . • • • • • . • • • Introduction • . • • • • • . . • Numerical Method Survey • . • • • • • • • • 1. Method of Finite Differences • • . . . • • 1.1 On the Application of the Method to Problems in Gas Dynamics • . . . . • 1. 2 Three Dimensional Supersonic Flow about Bodies • . . • • . • • • . . • • • 1.3 Calculation of Spherical Blast with Back Pressure
3
5 13 19 39 47
55 66
94 102 116
122 132 138 153 168 181 183 194 204 206 216
219 221 234
244 244 247
254
1.4 Calculation of Unsteady Discontinuities Solutions . . . . . . . . . . . . . . . . 1.5 Interaction of Shock Waves with Obstacles 2. Method of Integral Relations . . . . . . . . 2.1 Fundamental Principles of the Method of Integral Relations . . 2.2 Potential Gas Flows . . . . . . . . . . 2.3 Flows with Shock Waves . . . . . . . . 2.4 Transonic Flows Behind a Detached Shock 2.5 Flow in a Boundary Layer . . . . . . . . . 2.6 Supersonic Flow about a Body of Revolution at an Angle of Attack . . . . . . . . . . . . 3. The Method of Characteristics . . . . . . . . . . 3.1 Development of the Method of Characteristics . 3. 2 Constru