Beyond Partial Differential Equations On Linear and Quasi-Linear Abs

The present volume is self-contained and introduces to the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students

  • PDF / 4,279,431 Bytes
  • 291 Pages / 446.933 x 670.399 pts Page_size
  • 107 Downloads / 283 Views

DOWNLOAD

REPORT


Horst Reinhard Beyer

Beyond Partial Differential Equations On Linear and Quasi-Linear Abstract Hyperbolic Evolution Equations

1898

 

             



  

       

                     

     

                                                                                                                                                      

 





    



                                                                                                                                                                                                                               