Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications
- PDF / 2,240,989 Bytes
- 12 Pages / 595.276 x 790.866 pts Page_size
- 92 Downloads / 191 Views
ENGINEERING AND NANO-ENGINEERING APPROACHES FOR MEDICAL DEVICES Original Research
Bimetallic Pt,Ir-containing coatings formed by MOCVD for medical applications Svetlana I. Dorovskikh 1,2 Evgeniia S. Vikulova1,2 Danila B. Kal’nyi1,2 Yury V. Shubin1,2 Igor. P. Asanov1,2 Evgeniy A. Maximovskiy1,2 Anton K. Gutakovskii2,3 Natalya B. Morozova1 Tamara V. Basova1,2 ●
●
●
●
●
●
●
●
1234567890();,:
1234567890();,:
Received: 29 December 2018 / Accepted: 27 May 2019 / Published online: 4 June 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019
Abstract Biocompatible PtxIr(1−x) layers combining high mechanical strength of the iridium component and outstanding corrosion resistance of the platinum component providing reversible charge transfer reactions in the living tissue are one of the important materials required for implantable medical electrodes. The modern trend to complicate the shape and reduce the electrode dimensions includes the challenge to develop precise methods to obtain such bimetallic coatings with enhanced surface area and advanced electrochemical characteristics. Herein, PtxIr(1−x) coatings were firstly obtained on cathode and anode pole tips of endocardial electrodes for pacemakers using chemical vapor deposition technique. To deposit PtxIr(1−x) coatings with a wide range of metal ratios (x = 0.5–0.9) the combination of acetylacetonate-based volatile precursors with compatible thermal characteristics was used for the first time. The expected metal ratio in the coatings was regulated by a partial pressure of the precursor vapors in the reaction zone and was in the good agreement with its real value measured by various methods, including energy-dispersive and wavelength dispersive spectroscopy, X-ray photoelectron spectroscopy. According to the X-ray powder diffraction analysis, PtxIr(1−x) coatings consisted of fcc-PtxIr(1−x) solid solution phases. The microscopy data confirmed the formation of PtxIr1−x coatings with the enhanced surface areas. The effect of electrochemical activation on the surface composition and morphology of the samples was studied. The electrochemical characteristics of samples were estimated from cyclic voltammetry and electrochemical impedance spectroscopy data. The charge storage capacity (CSC) values of activated samples were in the range of 19–108 mCcm−2 (phosphate buffer saline solution, 100 mV/s).
Graphical Abstract
Supplementary information The online version of this article (https:// doi.org/10.1007/s10856-019-6275-1) contains supplementary material, which is available to authorized users. * Svetlana I. Dorovskikh [email protected] 1
Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentiev av. 3., 630090 Novosibirsk, Russia
2
Novosibirsk State University, Pirogova Str. 2, 630090 Novosibirsk, Russia
3
Rzhanov Institute of Semiconductor Physics SB RAS, Lavrentiev av. 13, 630090 Novosibirsk, Russia
69
Page 2 of 12
Journal of Materials Science: Materials in Medicine (2019) 30:69
Keywords Bimetallic coating MOCVD Electrode Pacemaker Charge
Data Loading...