Biocommunication of Plants

Plants are sessile, highly sensitive organisms that actively compete for environmental resources both above and below the ground. They assess their surroundings, estimate how much energy they need for particular goals, and then realise the optimum variant

  • PDF / 65,940 Bytes
  • 10 Pages / 439.37 x 666.142 pts Page_size
  • 21 Downloads / 194 Views

DOWNLOAD

REPORT


Series Editors Frantisˇ ek Balusˇ ka Department of Plant Cell Biology, IZMB, University of Bonn, Kirschallee 1, D-53115 Bonn, Germany Jorge Vivanco Center for Rhizosphere Biology, Colorado State University, 217 Shepardson Building, Fort Collins, CO 80523-1173, USA

For further volumes: http://www.springer.com/series/8094

.

Gu¨nther Witzany

l

Frantisˇek Balusˇka

Editors

Biocommunication of Plants

Editors Gu¨nther Witzany Telos - Philosophische Praxis Bu¨rmoos Austria

Frantisˇek Balusˇka Universita¨t Bonn Inst. Zellula¨re und Molekulare Botanik (IZMB) Bonn Germany

ISSN 1867-9048 e-ISSN 1867-9056 ISBN 978-3-642-23523-8 e-ISBN 978-3-642-23524-5 DOI 10.1007/978-3-642-23524-5 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2011945292 # Springer-Verlag Berlin Heidelberg 2012 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law. The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. Printed on acid-free paper Springer is part of Springer Science+Business Media (www.springer.com)

Preface

Why Biocommunication in Plants? If we speak of biocommunication in plants, we first must clarify the terms of communication and signalling which are based on systems we define as languages and codes. We should rely on the recent results of the pragmatic turn in the philosophy of science of the last century, which clarify the conditions for generating correct sentences in science. Biocommunication is defined as meaningful interaction between at least two living agents, which share a repertoire of signs (representing a kind of natural language) that are combined (according to syntactic rules) in varying contexts (according to pragmatic rules) to transfer content (according to semantic rules). Contrary to all former concepts, these three levels of semiotic rules are complementary parts of any natural language or code-based system. According to Charles Morris, we cannot speak of language or signal-mediated communication if one of these three levels is missing. So the most recent definition of biocommunication is this: sign-mediated and rule-governed meaningful interactions that depend on a communally shared repertoire of signs, codes and rules. Importantly, these features are lacking in any abiotic physical interaction. Additionally, we know that mathematical and mech